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1 Structured constrained convex optimization

We consider the following structured constrained convex optimization problem

min {0;(x) + 02(y) | Ax+ By=5b, z € X, y € Y} (1.1)

where 01 (z) : ™ — R, O2(y) : R — R are convex functions (but not
necessary smooth), A € R™*"1 B € R™*"2 andb € ™, X C k™,

Y C R™2 are given closed convex sets. We let n = n + no.

The task of solving the problem (1.1) is to find an (z*, y*, \*) € €2, such that

2

01 (x) — O1(x*) + (z — 2*) T (—ATX*) >0,
¢ Oa(y) = O2(y*) + (y —y*) ' (=BTA*) >0, V(z,y,A) €, (1.2)
(A=) (Az* + By* —b) >0,

\

where

=X x)Y xR™.
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By denoting
x — AT\
=", w=]| 4y |, Fw) = —BT
/ A Ax+ By —b
and

O(u) = 01(z) + 02(y),

the first order optimal condition (1.2) can be written in a compact form such as

w* € Q, 0(u)—0(u*)+(w—w*) F(w*) >0, Vw € Q. (1.3)

Note that the mapping F' is monotone. We use {2* to denote the solution set of

the variational inequality (1.3). For convenience we use the notations

v = and V" ={(y",\)|(z",y", A7) € Q" }.



Alternating Direction Method is a simple but powerful algorithm that is well suited
to distributed convex optimization [1]. This approach also has the benefit that one
algorithm could be flexible enough to solve many problems.

Applied ADM to the structured COP:  (y*, \F) = (yFT1, A1)

First, for given (yk, )\k), ¥+ 1 is the solution of the following problem

2F 1 = Argmin {91(33) + gHAx + ByF —b— %)\"“H2‘x S X} (1.4a)

Use A\* and the obtained z**1, y**1 is the solution of the following problem

1 = Argmin {0a(y) + 5 | A+ By—b— gX|’jy € Y} (140

AL = \F — B(AZR T 4 ByFtL — ). (1.4c)
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In some structured convex optimization (1.1), B is a scalar matrix. However, the
solution of the subproblem (1.4a) does not have the closed form solution because
of the general structure of the matrix A. In this case, we linearize the quadratic
term of (1.4a)

Az 4 ByE b A

at £ and add a proximal term % ||z — al|? to the objective function. In other

words, instead of (1.4a), we solve the following 2 subproblem:
min{0; (z) + Bz’ AT (Az" + By" — b — %)\k) + L — 2"|? |z e X}

Based on linearizing the quadratic term of (1.4a), in this lecture, we construct the
linearized alternating direction method. We still assume that the solution of the
problem

min{6; (z) + ng —al? |z € X} (1.5)

has a closed form.



2 Linearized Alternating Direction Method

In the Linearized ADM, x is not an intermediate variable. The k-th iteration of the
Linearized ADM is from (x*, y*, A\¥) to (xFT1, y* 1, Ak,

2.1 Linearized ADM

1. First, for given (x*, y*, \*), 2" is the solution of the following problem

TAT A k B A l)\k
2" 1= Argmin {91 (%) + Ba ( kw2 +By" —b=3A) . (2.1a)
+z ||z — 27| ’a:EX}

2. Then, use )\k and the obtained :Uk’“, ka is the solution of the following problem

yEy}. (2.1b)

3. Finally,

A= \F — (A" + By —b). (2.1c)
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Requirements on parameters 3, r I For given 3 > 0, choose r such that

rl, — BATA > 0. (2.2)

Analysis of the optimal conditions of subproblems in (2.1)

Note that z* 11, the solution of (2.1a), satisfies
e X, 0y (z) — 01 () + (z — 2FHT {—AT)\k
+BA" (Aml‘C + By" — b) + r(z" T — xk)} >0, Ve X. (2.3a)

k+1

Similarly, the solution of (2.1b) y satisfies

Y ey, a(y) - 0" + (v - ot { =BT

+B8BT (Az" + ByFt — b)} >0,Vye. (2.3b)
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Substituting A* 11 (see (2.1¢)) in (2.3) (eliminating \¥), we get 2*T! € X,

01(2) — 02" H) + (0 — 2T {—ATNF 4 BAT B — )
+(rln, — BATA) (" — 2™} >0, Vo e A, (2.4a)

and
y* eV, 0a(y)—02(y" T+ (y — " THT{=BTAT} >0, Vy € V. (24p)

For analysis convenience, we rewrite (2.4) as the following equivalent form:

_ k1 T yk+1 T
T —x —A" )\ A
O(u) — O(u" ) + . e B |BGE =y
y — y* T —B" A B
r1n, BATA 0 gF Tl — gk
+ >0, V(z,y) € X x )Y
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Combining the last inequality with (2.1c), we have
T

o — phtl ( _ AT )kt /AT
O(u) — 0" ) + | y— oyt | 4 —BT)\kF1 +8| BT |B(y* —y")
A= M)\ Azt 4 Byt — b \ 0
rl,, —BATA 0 0 ZF gk )
+ 0 BBTB 0 YRt — gk s > 0,
0 0 51m AN

forall (z,y,\) € X x Y x R™. The above inequality can be rewritten as

T

T — $k+1 AT
O(u)—0(u" )+ (w—w" ) F™ ) + 8 [ y -y | | BT Bl -y
A — \Frl 0
T
r — ghtt I, —BA"A 0 0 rh — Rt
> y— oyttt 0 BBTB 0 gk — yFt |, Yw € Q(2.5)
A — At 0 0 5Inm ) \ X =AM



2.2 Convergence of Linearized ADM

Based on the analysis in the last section, we have the following lemma.

Lemma 2.1 LetwFt! = (zF+L ok 1 NFH1) c Q) be generated by (2.1) from
the given w® = (%, y*, \¥). Then, we have

where
AT
n(y*, y* ) =8| BT | B(y" —y**), (2.7)
0
and
rlnl — BATA 0 0
G = 0 BBTB 0 . (2.8)
1
0 0 Elm
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Proof. Setting w = w™ in (2.5), and using GG and U(yka ka)

(,wk—l—l . w*)TG(,wk . wk—l—l)
> (wk—i—l_ fw*)Tn(yk,yk+1)+«9(uk+1)—6’(u*) + (wk—I—l_ w*)TF(wk+1).

, we get

Since F' is monotone, it follows that

H(Uk:-l-l)_@(u*) + (wk—l—l . w*)TF(wkz-l—l)
> O(uT) —0(u*) + (W —w)T F(w*) > 0.
The last inequality is due to w*T! € Q and w* € Q* is a solution of (see (1.3)).
The lemma is proved. [

By using n(y"*, y**1) (see (2.7)), Az* + By* = band (2.1c), we have

(W — )Ty, )
= (B(y* — g )TH{(AZM + By - (Ax” + By')
= (B(F —y" )T A(A 1 By )

= (AP = XFHTB(yF — o th), (2.9)



Substituting it in (2.6), we obtain

(wk—i—l L w*)TG(wk L wk—i—l)

> (AP = AMHT By — ), v € Q. (2.10)

Lemma 2.2 Letw*T! = (2F 1 oF 1 \k+1) € O be generated by (2.1) from
the given w® = (¥, y*, \¥). Then, we have

(NP = AFDOT B(yF — yF 1) > 0. (2.11)
Proof. Since (2.4b) is true for the k-th iteration and the previous iteration, we have
O2(y) = O2(y" ) + (y —y* ) {-B' N} >0, Vye), (@12

and

Oa(y) — O2(y") + (y — ") {-B" N} >0, Vy eV, (2.13)
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Setting y = yk in(2.12) and y = y’““rl in (2.13), respectively, and then adding
the two resulting inequalities, we get

()\k . /\k—l—l)TB(yk . yk—i—l) > 0.

The assertion of this lemma is proved. ]

Under the assumption (2.2), the matrix (G is positive semi-definite. In addition, if
B is a full column rank matrix, G is positive definite. Even if in the positive

semi-definite case, we also use ||w — w|| ¢ to denote

lw — @l = \/(w — @)7C(w — ).
If B is a full column rank matrix, (G is positive definite.

Lemma 2.3 Letw* Tt = (gF+1 o*FTL A1) € O be generated by (2.1) from
the given w® = (x¥,y*, \¥). Then, we have

(W —w) TG (W —wh ™) >0, Vw* e Qr, (2.14)



and consequently

HwkH — w*H% < Hwk — w*H2G — le‘C — wkHHé, Vw* e Q. (2.15)

Proof. Assertion (2.14) follows from (2.10) and (2.11) directly. By using (2.14), we

have
lw* —w* & = " —w") + (0 — "G
_ Hwk—l—l W HG + Q(wk—l—l L w*)TG(wk o wk—l—l)

Hw® = w* G

Z Hwkz—|-1 wk:—|—1H2

—w*||& + [w* —
and thus (2.15) is proved. [

The inequality (2.15) is essential for the convergence of the alternating direction

method. Note that (7 is positive semi-definite.

Jw* —w*tHEZ =0 «—= Gw" —w")=0.
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The inequality (2.15) can be written as

1

5
* * ]‘ *

<l —a H%rI—BATA) + BIB(y" — y*)II* + BH)\k — N2

e+t — x*H%rI—BATA) + BIB T =y + S [AM = A2

1
_(H:L‘k _ xk+1||%rI—BATA) + BHB(yk . yk—l—l)HQ + BH)‘k . Ak—HHQ)-

It leads to that

lim z* = z*, lim By*® = By*  and lim AF = \*.
k— oo k— oo k— oo

The linearizing ADM is also known as the split inexact Uzawa method in image

processing literature [9, 10].



3 Self-Adaptive ADM-based Contraction Method

In the last section, we get ghtl by solving the following x-subproblem:
min{60; (z) + Bz’ AT (Az" + By" — b — %)\k) + gHa} — zF|? |z e X}
and it required that the parameter r to satisfy

rl, — BATA>0 = 7> BAnax(ATA).

In some practical problem, a conservative estimation of Ap,ax (AL A) will leads a
slow convergence. In this section, based on the linearized ADM, we consider the
self-adaptive contraction methods. Each iteration of the self-adaptive contraction
methods consists of two steps—prediction step and correction step. From the
given w”, the prediction step produces a test vector " and the correction step

offers the new iterate w®T!.
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3.1 Prediction

1. First, for given (2, y*, A\¥), 2% is the solution of the following problem

TATAk Bk_ 1k
~k_Argmin<{91(x)—|—Bx (Ax® + By"® — b 6)‘)>

T
+5 ||z — :1:’“||2 ’ T € X}

(3.1a)

2. Then, use \* and the obtained Z*, gjk is the solution of the problem

. kNT A~k By —
7% = Argmin 4 2W) S (A ?k (AZ" + J ) ly eyl @)
3. Finally,

A= \E — B(AZ* + By —b). (3.1¢)

The subproblems in (3.1) are similar as in (2.1). Instead of (z*T1, y**1 \FT1)
in (2.1), we denote the output of (3.1) by (T, 7%, \F).
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Requirements on parameters (3, r I For given 3 > 0, choose r such that

Bl AT A(z* — #%)|| < vr||a* — 7|, v e (0,1). (3.2)

frl — BAT A > 0, then (3.2) is satisfied. Thus, (2.2) is sufficient for (3.2).

Analysis of the optimal conditions of subproblems in (3.1)

Because we get " in (3.1) via substituting w* T in (2.1) by @w". Therefore,
similar as (2.5), we get

T, .
x — " — AT\ AT
O(u) —0(a") + | y—g* | < — BT\ +8| BT | B(y" —7")
A—X )\ Az% + BgF —b 0
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The last variational inequality can be rewritten as

w® € Q, O(u) —0(@") + (w— ")
{F(@") +n(y*, %) + HM (0" —w")} >0, Vw € Q, (3.3)

where
AT
n(y*, %) =8| BT | Bly* —7"), (3.4)
0
r1n, 0 0
1
0 0 Flm



and

Based on the above analysis, we have the following lemma.

Lemma 3.1 Letw* = (Z%, ", 5\’“) € (2 be generated by (3.1) from the given
wk = (2%, y*, \¥). Then, we have

(@" —w")" HM (w" —@") > (@" —w")'n(y", §%), Yo" Q. @7

Proof. Setting w = w™ in (3.3), we obtain

+0(a") — O(u*) + (W* — w*) T F(a"). (3.8)
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Since F'is monotone and w* € €. it follows that

0(a") — 0(u*) + (0 — w*)" F(w")
> 0(@") — O(u*) + (@F — w)TF(w*) > 0.

The last inequality is due to W* € Q and w* € Q* is a solution of (1.3).
Substituting it in the right hand side of (3.8), the lemma is proved. [l

In addition, because Az* + By* = band S(AZ* + Bg* — b) = \F — M\F.
we have

(@ —w*) " n(y", §")

= (B(y" —§")" B{(AZ" + By*) — (Az* + By")}
= (A*=M)TB@W" - 7). (3.9)

Lemma 3.2 Let " = (:Tf;k, g’]k, 5\’“) € () be generated by (3.1) from the given

wk = (2%, y*¥ \F). Then, we have

(w* — w*)THM(wk — %) > p(w”, o), Vw* e Q*, (3.10)



p(w*, ") = (w* =) T HM (w* =)+ (A =A")T B(y* ~5"*). @3.11)
Proof. From (3.7) and (3.9) we have
(’u~}k - w*)THM(wk . U~Jk) > ()\k . S\k)TB(yk o ?jk)

Assertion (3.10) follows from the last inequality and the definition of o (w”, w")
directly. 0

3.2 The Primary Contraction Methods

The primary contraction methods use .M(w"C — u?k) as search direction and the

unit step length. In other words, the new iterate is given by

wh Tt = wh — M(w® — aF). (3.12)
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According to (3.6), it can be written as

phtl Tk + éATA(:ck — )
yFrl | = Tk . (3.13)
Ak+1 Xk

In the primary contraction method, only the x-part of the corrector is different
from the predictor. In the method of Section 2, we need r > B||ATA||. By

using the method in this section, we need only a r to satisfy the condition (3.2).

In practical computation, we try to use the average of the eigenvalues of 5ATA.

Using (3.10), we have

|w® —w | = W™ —w|F
= [lw® —wlE = l(w* = w*) = M(w" —a")|F
= 20w’ —w) HM(w" —@") — [M(w® — )|
> 20wk, W) — || M (w* —a")||%. (3.14)



Because (7%, \¥) = (y#t1, \F+1), the inequality (2.11) is still holds and thus
(A = ATB —g%) > 0.

Therefore, it follows from (3.14) , (3.11) and the last inequality that

|w® — w7 = W™ —w|F

> 2wt — ") HM (w® — @) —||M(w® — @)||%. (3.15)
Lemma 3.3 Under the condition (3.2), we have
2(w” — ") HM (w® — ")~ | M (w® — @")||3
> (L= v?)rlla® — 2|1 + B By* — g°)II° + FIIA° = A*[12.3.16)

Proof. First, we have

2(w" — ") HM(w* — &%) — [ M (w* — @)%
= (W' —a""(M"H+HM — M"HM)(w* — a").
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By using the structure of the matrices H and M (see (3.5) and (3.6)), we obtain

MYH+HM - M*"HM =H - (I -M")H(I - M)

rl, 0 0 r(2ATA)2 0 0
— 0 BBTB 0 — 0 0 0
0 0 %Im 0 0 0

Therefore,
2(w" — ") HM (w® — ")~ | M (w* — @")||3
= b —a* | —rG)IATAGCT - a7
Under the condition (3.2), we have
CATA@® = &) < 2)la* — 2.
Substituting it in (3.17), the assertion of this lemma is proved. U

Theorem 3.1 Let " = (:’i:k, gk, 5\’“) € () be generated by (3.1) from the given
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wk = (2%, y* \*) and the new iterate w*** is given by (3.12). The sequence

{w* = (2, y"*, \F)} generated by the elementary contraction method satisfies

Jw™ —wff < Jw® —w | - (=)t -G 318

Proof. From (3.15) and (3.16) we obtain

|w® —w* |l = 0™ = w*|[E
(1 —v?)rllz® = 2|12 + Bl B(y" — g1 + A" = A*)?

> (1=v%)[lw" — 2",

1V

The assertion of this theorem is proved. O]

Theorem 3.1 is essential for the convergence of the primary contraction method.
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3.3 The general contraction method

The general contraction method ' For given wk we use

w(a) = w® — aM(w® — ") (3.19)

to update the c-dependent new iterate. For any w™* € €2*, we define
I(@) = [Jw* —w|F — [w(a) — w5 (3.20)
and
q(a) = QOzgp(wk,sz) — onH]W(wlC — ’Lbk)H%{a (3.21)
where @(w”, w") is defined in (3.11).

Theorem 3.2 Let w(«) be defined by (3.19). For any w* € Q* and v > 0, we
have
d(a) > q(a), (3.22)

where ¥ () and q(«) are defined in (3.20) and (3.21), respectively.
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Proof. It follows from (3.19) and (3.20) that
da) = [ —wlf - [(w* —w*) —aM(w* —@")|%
= 20(w” —w)THM(w® — %) — o?||M(w" — @)%
By using (3.10) and the definition of ¢(«), the theorem is proved. O

Note that ¢(«v) in (3.21) is a quadratic function of «v and it reaches its maximum at

k -k
o — 90(1: ’“ik) - (3.23)
M (w* —@*)|[%
In practical computation, we use
wh T = wh — yaf M (w® — "), (3.24)

to update the new iterate, where v € [1, 2) is a relaxation factor. By using (3.20)
and (3.22), we have

Jw* — wlf < w® — w7 — alyai). (3.25)
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Note that
g(vag) = 2vage(w®, @F) — (vog)? | M (w* —a")|3. (3.26)

Using (3.23) and (3.24), we obtain

. 2—r
q(vog) = 7(2 — ) ()| M (w* — @) |3 = THw’“ — w3,
and consequently it follows from (3.25) that
2 _
Jwh = w1 <l — | E — T ok — W, Vet e
(3.27)

On the other hand, it follows from (3.23) and (3.26) that

g(yag) =v(2 — v)age(w®, ©%). (3.28)
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By using (3.11) and (3.16), we obtain
2p(w", ") — | M (w* —@")||3
= 2(w" - )THM( F b)) — M (" - a")|F
2N = X)TB(y* — §")
(1 —v?)rllz® = 3|2 + B B(y" — 7)1 + A" =A%)
2\ = X)TB(y* — §")
= (1=v")r|z" = %2 + BBy —7°) + (A = A9

'V

Thus, we have 2p(w”, %) > || M (w® — @*)||?, and consequently

ag, > —.
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In addition, because

p(w®, wF) = (w* — oF)T HM (w* — @F) + (A" = AT B(y*F — §")

T

ok — ¥ rl, —BATA 0 0 ok — gk
— yk_gk 0 6BTB %BT yk_gk
Ne— \F 0 1B %Im Ne— \E

> |lo* = 3| - (rlla® — 2% — B|AT A(z” — 2¥)]|)

T
1 yk_gk BBTB 0 yk_gk
T2\ ke 0 ir,) WX

Under the condition (3.2), it follows from the last inequality that

p(w®, ") > min{(1—v), }H’w - "G

1 —v

> 013 (3.29)
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By using (3.25), (3.28), (3.29) and oz,"; > % we obtain the following theorem for

the general contraction method.

Theorem 3.3 The sequence {w" = (z*,y"*, \*)} generated by the general

contraction method satisfies

Wt — w*||

<k — w2 — 2Dk k)2 vt e QF. (3.30)

The inequality (3.30) in Theorem 3.3 is essential for the convergence of the

general contraction method.

Both the inequalities (3.18) and (3.30) can be written as

[ —w|[F < [l — w7 = collw® — @[, Yu© € Q7



where ¢y > 0 is a constant. Therefore, we have

1

5]
1

< rlla® =22+ BIBWE -y + EHA"C — AT

el — 2|+ BB =y )P+ ST = AT

g _ 1 X
—co(rlla® — 2" + BBy —g")|I* + EHA’“ = AM|7).

It leads to that

- . 1 <
(rll=* = 2% + BIBy* — g")[1* + BIIA’“ = A7),

lim
k— o0

and

lim z* = z*, lim By® = By*  and lim AF = \*.

k— 00 k— o0 k— 00
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4 Applications in [{-norm problems

An important [1-norm problem in the area machine learning is the [ regularized
linear regression, also called the lasso [8]. This involves solving

min 7||z|}; + ||4z — b|3, (4.1)

where 7 > 0 is a scalar regularization parameter that is usually chosen by
cross-validation. In typical applications, there are many more features than
training examples, and the goal is to find a parsimonious model for the data. The
problem (1.1) can be reformulated to problem

min 7||z|1 + %HZJH% (4.2)
Ar —y=>

which is a form of (1.1). Applied the alternating direction method (1.4) to the
problem (4.2), the x-subproblem is

2" = Argmin {7]|z[ly + 5| (Az — y*) — ZAF|3},
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and the solution does not has closed form. Applied the linearized alternating
direction method (2.1) to the problem (4.2), the x-subproblem (2.1a) is

7" = Argmin{7||z||; + L]z — [2" + %)\k — éAT(Aa:k —y"NI%}. @.3)
This problem is form of (1.5) and its solution has the following closed form:

ik =a — PBgér [a], where a=zx" + %)\k — éAT(Ag;’€ — yk)

and

BY" ={£ e R"| — (r/r)e <& < (1/r)e}.

By using the linearized alternating direction method in Section 2, for given 5 > 0,
it needs > BAmax (AL A). By using the self-adaptive ADM-based contraction
method in Section 3, it needs 7 to satisfy

BIATA@" — 2°)|| < vrlla® — 2", v e (0,1).

Because A is a generic matrix, the above condition is satisfied even if r is much

less than SApax (AL A).
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