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1 Introduction

We consider the following structured constrained convex optimization problem

min {θ1(x) + θ2(y) |Ax+By = b, x ∈ X , y ∈ Y} (1.1)

where θ1(x) : <n1 → <, θ2(y) : <n2 → < are convex functions (but not

necessary smooth), A ∈ <m×n1 , B ∈ <m×n2 and b ∈ <m, X ⊂ <n1 ,

Y ⊂ <n2 are given closed convex sets.

First, as the work [18, 19] for analyzing the convergence of ADMM, we need a

variational inequality (VI) reformulation of the model (1.1) and a characterization

of its solution set. More specifically, solving (1.1) is equivalent to finding

w∗ = (x∗, y∗, λ∗) ∈ Ω such that

VI(Ω, F, θ) : θ(u)− θ(u∗) + (w−w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (1.2a)
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where

u =

 x

y

 , θ(u) = θ1(x) + θ2(y), w =


x

y

λ

 (1.2b)

F (w) =


−ATλ
−BTλ

Ax+By − b

 and Ω = X × Y × <m (1.2c)

Since the mapping F (w) defined in (1.2c) is affine with a skew-symmetric matrix,

it is thus monotone. We denote by Ω∗ the solution set of VI(Ω, F, θ), and

consider the problem under the nonempty assumption onto Ω∗.

The augmented Lagrangian function of the problem (1.1) is defined by

Lβ(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b) +
β

2
‖Ax+By − b‖2.
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Applied ADMM to the problem (1.1)

From given vk = (yk, λk), the iteration produces wk = (xk+1, yk+1, λk+1).

The iteration scheme:

1. First, for given (yk, λk), xk+1 is the solution of the following problem

xk+1 ∈ Argmin{Lβ(x, yk, λk)|x ∈ X}. (1.3a)

2. Use λk and the obtained xk+1, find yk+1 by

yk+1 ∈ Argmin
{
Lβ(xk+1, y, λk)

∣∣y ∈ Y} . (1.3b)

3. Set the multipliers by

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.3c)

The sequence {vk} generated by (1.4) satisfies

‖vk+1−v∗‖2Hc
≤ ‖vk−v∗‖2Hc

−‖vk−vk+1‖2Hc
, Hc =

(
βBTB −BT
−B 1

β Im

)
.
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Applied ADMM-based customized PPA to the problem (1.1)

From given vk = (yk, λk), the prediction step produces w̃k = (x̃k, ỹk, λ̃k).

The prediction step:

1. First, for given (yk, λk), x̃k is the solution of the following problem

x̃k =∈ Argmin{Lβ(x, yk, λk)|x ∈ X}. (1.4a)

2. Set the multipliers by

λ̃k = λk − β(Ax̃k +Byk − b). (1.4b)

3. Finally, use the obtained x̃k and λ̃k, find ỹk by

ỹk = Argmin{Lβ(x̃k, y, λ̃k)|y ∈ Y}. (1.4c)

The new iterate vk+1 is given by

vk+1 = vk − α(vk − ṽk), α ∈ (0, 2). (1.5)
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With given vk, the predictor w̃k is generated by an/order changed ADMM0.

As analyzed in the last section, for the predictor w̃k ∈ Ω, we have

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v−ṽk)THc(v
k−ṽk) ≥ 0, ∀w ∈ Ω, (1.6)

where

Hc =

(
βBTB −BT

−B 1
β
Im

)
. (1.7)

Set w = w∗ in (1.6), we get

(ṽk − v∗)THc(v
k − ṽk) ≥ 0

and thus

(vk − v∗)THc(v
k − ṽk) ≥ ‖vk − ṽk‖2Hc

Using the above inequality, it is easy to show that generated sequence {vk} by

(1.4)-(1.5) satisfies

‖vk+1 − v∗‖2Hc
≤ ‖vk − v∗‖2Hc

− α(2− α)‖vk − ṽk‖2Hc
.
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Symmetric ADMM for the problem (1.1)

In practice, the primal variables x and y should be treated fairly. In this paper, we

propose the following iterative scheme for the problem (1.1). Again, v = (y, λ)

are the essential variables and x is the intermediate variable. The k-th iteration

starts with vk = (yk, λk), produces vk+1 = (yk+1, λk+1) via
xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},
λk+ 1

2 = λk − αβ(Axk+1 +Byk − b),
yk+1 = arg min{Lβ(xk+1, y, λk+ 1

2 ) | y ∈ Y},
λk+1 = λk+ 1

2 − αβ(Axk+1 +Byk+1 − b),

(1.8)

where α ∈ (0, 1). If α = 1, the method is the Peaceman-Rachford splitting

method (PRSM) in [20, 21] to the problem (1.1).

We will prove the sequence {vk} is strictly contractiveto the solution set and

establish a worst-case O(1/t) convergence rate for the PRSM scheme (2.1).
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2 Preliminaries

In this section, we summarize some useful preliminaries known in the literature

and prove some simple conclusions for further analysis.

Let α = 1, the iterative scheme of SPRSM (1.8) for (1.1) becomes
xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},
λk+ 1

2 = λk − β(Axk+1 +Byk − b),
yk+1 = arg min{Lβ(xk+1, y, λk+ 1

2 ) | y ∈ Y},
λk+1 = λk+ 1

2 − β(Axk+1 +Byk+1 − b),

(2.1)

where λ ∈ <m is the Lagrange multiplier associated with the linear constraints in

(1.1) and β > 0 is a penalty parameter. As analyzed in [9], the PRSM scheme

(2.1) differs from ADMM “only through the addition of the intermediate update of

the multipliers (λk+ 1
2 ); it thus offers the same set of advantages”. The PRSM

scheme (2.1), however, according to [9] again (see also [14]), “is less ‘robust’ in
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that it converges under more restrictive assumptions than ADMM” and “if it does

converge, then its rate of convergence is faster”. We refer to [1, 12] for some

numerical verification of the efficiency of PRSM.

According to Theorem 2.3.5 in [7], a very useful characterization of the solution

set Ω∗ of VI(Ω, F, θ) can be summarized in the following theorem. Its proof can

be found in [7, 18].

Theorem 2.1 The solution set of VI(Ω, F, θ) is closed and convex; and it can be

characterized as

Ω∗ =
⋂
w∈Ω

{
w̃ ∈ Ω :

(
θ(u)− θ(ũ)

)
+ (w − w̃)TF (w) ≥ 0

}
. (2.2)

Theorem 2.1 thus implies that w̃ ∈ Ω is an approximate solution of VI(Ω, F, θ)

with an accuracy of O(1/t) if it satisfies

θ(ũ)− θ(u) + (w̃ − w)TF (w) ≤ ε, ∀w ∈ Ω, (2.3)

with ε = O(1/t). In fact, this characterization makes it possible to analyze the
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convergence rate of ADMM and other splitting methods via the VI approach rather

than the conventional approach based on the functional values in the literature. In

the following, we shall show that either the sequence (2.1) or (1.8) provides us

such an iterate satisfying (2.3) after t iterations.

As mentioned in [2] for ADMM, the variable x is an intermediate variable during

the PRSM iteration since it essentially requires only (yk, λk) in (2.1) or (1.8) to

generate the (k + 1)-th iterate. For this reason, we define the notations

vk = (yk, λk), V = Y × <m,

V∗ := {v∗ = (y∗, λ∗) |w∗ = (x∗, y∗, λ∗) ∈ Ω∗};

and it suffices to analyze the convergence rate of the sequence {vk} to the set

V∗ in order to study the convergence rate of the sequence {wk} generated by

(2.1) or (1.8). Note V∗ is also closed and convex.

Finally, we define some matrices in order to present our analysis in a compact
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way. Let

M =

 In2
0

−αβB 2αIm

 . (2.4)

and

Q̃ =


0 0

βBTB −αBT

−B 1
β Im

 . (2.5)

In (2.5), “0” is a matrix with all zero entries in appropriate dimensionality. We

further define

Q =

 βBTB −αBT

−B 1
β Im

 . (2.6)

as the submatrix of Q̃ excluding all the first zero rows. The matrices Q̃ and Q are

associated with the analysis for the sequences {wk} and {vk}, respectively.
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Last, for α ∈ (0, 1] we define a symmetric matrix

H =
1

2

 (2− α)βBTB −BT

−B 1
αβ Im

 . (2.7)

Lemma 2.1 The matrix H defined in (2.7) is positive definite for α ∈ (0, 1) and

positive semi-definite for α = 1.

Proof We have

H =
1

2

 √βBT 0

0
√

1
β I


 (2− α)I −I

−I 1
αI


 √βB 0

0
√

1
β I

 .

Note that the matrix  (2− α) −1

−1 1
α


is positive definite if α ∈ (0, 1) and positive semi-definite if α = 1. Thus
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assertion is thus proved. 2.

Lemma 2.2 The matrices M , Q and H defined respectively in (2.4), (2.6) and

(2.7)) have the following relationships:

HM = Q (2.8)

and

G = QT +Q−MTHM � (1− α)

2(1 + α)
MTHM. (2.9)

Proof. Using the definition of the matrices M , Q and H , by a simple

manipulation, we obtain

HM =
1

2

 (2− α)βBTB −BT

−B 1
αβ Im

 I 0

−αβB 2αIm


=

1

2

 2βBTB −2αBT

−2B 2
β Im

 = Q.
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The first assertion is proved. Consequently, we get

MTHM = MTQ =

(
In2

−αβBT

0 2αIm

)(
βBTB −αBT

−B 1
β Im

)

=

(
(1 + α)βBTB −2αBT

−2αB 2α
β Im

)
. (2.10)

Using (2.6) and the above equation, we have

G = (QT +Q)−MTHM = (1− α)

(
βBTB −BT

−B 2
β Im

)
. (2.11)

Since

(
β −1

−1 2
β

)
is positive definite, we say G is essentially positive definite .
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Note that

2(1+α)

 βBTB −BT

−B 2
β Im

−MTHM =

 (1 + α)βBTB −2BT

−2B 4+2α
β Im

 .

(2.12)

Because  (1 + α) −2

−2 4 + 2α

 � 0, ∀ α ≥ 0,

the right-hand side of (2.12) is positive semidefinite. Thus, it follows that βBTB −BT

−B 2
β Im

 � 1

2(1 + α)
MTHM. (2.13)

Substituting (2.13) in (2.11), we obtain (2.9) and the lemma is proved. 2

Remark 2.1 When α = 1, the matrices H defined in (2.7) and

QT +Q−MTHM are both positive semi-definite. But, in the following

analysis we still use ‖v − ṽ‖H and ‖v − ṽ‖QT +Q−MTHM to denote
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respectively

‖v − ṽ‖H =
(
(v − ṽ)TH(v − ṽ)

)1/2
and

‖v − ṽ‖QT +Q−MTHM =
(
(v − ṽ)T (QT +Q−MTHM)(v − ṽ)

)1/2
,

for v, ṽ ∈ Y × <m. This slight abuse of notation will alleviate the notation in our

analysis greatly.

We also have the following lemma.

Lemma 2.3 Let {wk} be the sequence generated by the strictly contractive

PRSM (1.8), and H be defined in (2.7). Then, wk+1 is a solution of VI(Ω, F, θ)

if ‖vk − vk+1‖2H = 0.

Proof. See Lemma 3.2 in [19]. 2
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3 Contraction Analysis

In this section, we analyze the contraction property for the sequence {vk}
generated by the PRSM scheme (2.1) or the strictly contractive PRSM scheme

(1.8) with respect to the set V∗. The convergence rate analysis for (2.1) and (1.8)

to be presented is based on this analysis of contraction property. Since (2.1) can

be included by the strictly contractive PRSM scheme (1.8) if we extend the value

of α = 1 and the algebra of convergence analysis for these two schemes are of

the same framework, below we only present the contraction analysis for (1.8) and

the analysis for (2.1) is readily obtained by taking α = 1 in our analysis.

First, to further alleviate the notation in our analysis, we need to define an

auxiliary sequence {w̃k} as

w̃k =


x̃k

ỹk

λ̃k

 =


xk+1

yk+1

λk − β(Axk+1 +Byk − b)

 , (3.1)
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where (xk+1, yk+1) is generated by (2.1) or (1.8). Note with the notation of w̃k,

the strictly contractive PRSM (1.8) can be written as
x̃k = arg min

{
θ1(x)− (λk)TAx+ β

2 ‖Ax+Byk − b‖2
∣∣ x ∈ X} ,

ỹk = arg min

{
θ2(y)− [λk − α(λk − λ̃k)]TBy

+β
2 ‖Ax̃

k +By − b‖2

∣∣∣∣ y ∈ Y
}
.

(3.2)

Then, based on (1.8) and (3.1), we immediately have

xk+1 = x̃k, yk+1 = ỹk and λk+ 1
2 = λ̃k

and

λk+1 = λk+1/2 − αβ(Ax̃k +Bỹk − b)
= λk − α(λk − λ̃k)− α

[
β(Ax̃k +Byk − b)− βB(yk − ỹk)

]
= λk − α(λk − λ̃k)− α

[
(λk − λ̃k)− βB(yk − ỹk)

]
= λk −

[
2α(λk − λ̃k)− αβB(yk − ỹk)

]
. (3.3)
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Furthermore, together with yk+1 = ỹk, we have the following relationship yk+1

λk+1

 =

 yk

λk

−
 In2

0

−αβB (1 + α)Im

 yk − ỹk

λk − λ̃k

 ;

which can be rewritten into a compact form by using the notations of vk and ṽk:

vk+1 = vk −M(vk − ṽk), (3.4)

where M is defined in (2.4).

Now, we start to prove some properties for the sequence {w̃k} defined in (3.1).

Recall our primary purpose is to analyze the convergence rate for the sequences

(2.1) and (1.8) based on the solution characterization (2.2), and the accuracy of

an approximate solution w̃ ∈ Ω is measured by a upper bound of the quantity of

θ(ũ)− θ(u) + (w̃ − w)TF (w) for all w ∈ Ω (see (2.3)). Hence, we are

interested in estimating how accurate the point w̃k defined in (3.1) is to a solution

point of VI(Ω, F, θ). The main result is proved in Theorem 3.1. But before that,

we first show two lemmas. The first lemma presents a upper bound of
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θ(ũ)− θ(u) + (w̃ − w)TF (w) for all w ∈ Ω in term of a quadratic term

involving the matrix Q.

Lemma 3.1 For given vk ∈ Y × <m, let wk+1 be generated by the strictly

contractive PRSM scheme (1.8) and w̃k be defined in (3.1). Then, we have

w̃k ∈ Ω and

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω,

(3.5)

where the matrix Q is defined in (2.6).

Proof. Since xk+1 = x̃k, by deriving the first-order optimality condition of the

x-minimization problem in (3.2), we have

θ1(x)−θ1(x̃k)+(x− x̃k)T {AT [β(Ax̃k+Byk−b)−λk]} ≥ 0, ∀x ∈ X .
(3.6)

According to the definition (3.1), we have

λ̃k = λk − β(Ax̃k +Byk − b). (3.7)
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Using (3.7), the inequality (3.6) can be written as

θ1(x)− θ1(x̃k) + (x− x̃k)T {−AT λ̃k} ≥ 0, ∀x ∈ X . (3.8)

Similarly, by deriving the first-order optimality condition of the y-minimization

problem in (3.2), we get

θ2(y)− θ2(ỹk) + (y − ỹk)TBT

{
β(Ax̃k +Bỹk − b)
−[λk − α(λk − λ̃k)]

}
≥ 0, ∀ y ∈ Y.

(3.9)

Again, using (3.7), we have

β(Ax̃k +Bỹk − b)− [λk − α(λk − λ̃k)]

= −(λ̃k − λk) + βB(ỹk − yk)− [λk − α(λk − λ̃k)]

= −λ̃k + βB(ỹk − yk)− α(λ̃k − λk).
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θ2(y)−θ2(ỹk)+(y−ỹk)T
{−BT λ̃k + βBTB(ỹk − yk)

−αBT (λ̃k − λk)

}
≥ 0, ∀ y ∈ Y.

(3.10)

In addition, based on (3.1) we have

(Ax̃k +Bỹk − b)−B(ỹk − yk) +
1

β
(λ̃k − λk) = 0. (3.11)

Combining (3.8), (3.10) and (3.11) together, we get w̃k = (x̃k, ỹk, λ̃k) ∈ Ω;

and for any w = (x, y, λ) ∈ Ω, it holds

θ(u)− θ(ũk) +

 x− x̃k

y − ỹk

λ− λ̃k


T  −AT λ̃k

−Bλ̃k

Ax̃k +Bỹk − b



+

 x− x̃k

y − ỹk

λ− λ̃k


T  0

βBTB(ỹk − yk)− αBT (λ̃k − λk)

−B(ỹk − yk) + 1
β (λ̃k − λk)

 ≥ 0.

The assertion (3.5) is only a compact form of the above inequality by using the



XIV - 23

notations of Q in (2.6), w and F in (1.2b) and v. The proof is complete. 2

The second lemma aims at expressing the bound (v − ṽk)TQ(vk − ṽk) found

in Lemma 3.1 by the difference of two quadratic terms involving two consecutive

iterates of the sequence {vk} and a quadratic term involving vk and the auxiliary

iterate ṽk. This equivalent expression is convenient for the manipulation over the

whole sequence {vk} recursively and thus for establishing the convergence rate

of {vk} in either ergodic or nonergodic sense.

Lemma 3.2 Let {wk} be generated by the strictly contractive PRSM scheme

(1.8) and {w̃k} be defined in (3.1); M , Q and H be defined in (2.4), (2.6) and

(2.7), respectively. Then we have

(v − ṽk)TQ(vk − ṽk) =
1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

(1− α)

4(1 + α)
‖M(vk − ṽk)‖2H , ∀v ∈ V. (3.12)

Proof. By using Q = HM and M(vk − ṽk) = (vk − vk+1) (see (3.4)), it



XIV - 24

follows that

(v − ṽk)TQ(vk − ṽk) = (v − ṽk)THM(vk − ṽk)

= (v − ṽk)TH(vk − vk+1). (3.13)

For the vectors a, b, c, d in the same space and a matrix H with appropriate

dimensionality, we have the identity

(a−b)TH(c−d) =
1

2
{‖a−d‖2H−‖a−c‖2H}+

1

2
{‖c−b‖2H−‖d−b‖2H}.

In this identity, we take

a = v, b = ṽk, c = vk, and d = vk+1,

and submit it to the right-hand side of (3.13). The resulting equation is

(v − ṽk)TQ(vk − ṽk) =
1

2

(
‖v − vk‖2H − ‖v − vk+1‖2H

)
+

1

2
(‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H). (3.14)
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Now, we deal with the last term of the right-hand side of (3.14). By using (3.4) and

(2.8), we get

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk)− (vk − vk+1)‖2H

(3.4)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)−M(vk − ṽk)‖2H
= 2(vk − ṽk)HM(vk − ṽk)− (vk − ṽk)MTHM(vk − ṽk)

(2.8)
= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk)

(2.9)
≥ (1− α)

2(1 + α)
(vk − ṽk)TMTHM(vk − ṽk)

=
(1− α)

2(1 + α)
‖M(vk − ṽk)‖2H .

Substituting it in (3.14), we obtain the assertion (3.12). The proof is complete. 2

Now we are ready to present an inequality where a upper bound of

θ(ũk)− θ(u) + (w̃k − w)TF (w) is found for all w ∈ Ω. This inequality is
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also crucial for analyzing the contraction property and the convergence rate for

the iterative sequence generated by either (2.1) or (1.8).

Theorem 3.1 For given vk ∈ Y × <m, let wk+1 be generated by the strictly

contractive PRSM scheme (1.8) and w̃k be defined in (3.1); M and H be

defined in (2.4) and (2.7), respectively. Then, we have w̃k ∈ Ω and

θ(ũk)− θ(u) + (w̃k − w)TF (w)

≤ 1

2

(
‖v − vk‖2H − ‖v − vk+1‖2H

)
− 1− α

4(1 + α)
‖M(vk − ṽk)‖2H , ∀w ∈ Ω. (3.15)

Proof. First, by using the structure of F (w) (see (1.2c)), we have

(w − w̃)T (F (w)− F (w̃)) = 0, ∀w, w̃ ∈ Ω.

Then, using the above equality and replacing the right-hand side term in (3.5) with

the identity (3.12), we obtain the assertion (3.15). The proof is complete. 2
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The assertion (3.15) also enables us to study the contraction property of the

sequence {vk} generated by (2.1) or (1.8). In fact, setting w = w∗ in (3.15)

where w∗ being an arbitrary solution point in Ω∗, we get

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H

≥ 1− α
2(1 + α)

‖M(vk − ṽk)‖2H + 2{θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗)}.

which implies that

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H −
1− α

2(1 + α)
‖M(vk − ṽk)‖2H . (3.16)

Recall the identity (3.4). We thus have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H −
1− α

2(1 + α)
‖vk − vk+1‖2H , ∀v∗ ∈ V∗.

(3.17)

Therefore, when α = 1, i.e., for the PRSM scheme (2.1), we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H , (3.18)
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which means the sequence {vk} generated by (2.1) is contractive, but not strictly,

to the set V∗. In fact, it is possible that the sequence {vk} stays away from the

solution set with a constant distance, hence no convergence is guaranteed by

(3.18). In [5], such an example is constructed. On the other hand, when

α ∈ (0, 1), the inequality (3.17) ensures a reduction of 1−α
2(1+α)‖v

k − vk+1‖2H
to the set V∗ at the (k + 1)-th iteration, i.e., the strict contraction of {vk} is

guaranteed for the sequence generated by (1.8). We can thus expect that the

strictly contractive PRSM (1.8) converges faster to V∗ than the original PRSM

(2.1). As we have mentioned, the difference of contraction between (3.17) and

(3.18) is also the reason why we can establish a nonergodic convergence rate for

the strictly contractive PRSM (1.8) while only an ergodic convergence rate can be

established for the original PRSM (2.1).
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4 Convergence rate of (2.1) in ergodic sense

In this section, we show that although the original PRSM (2.1) might not be

convergent to a solution point of the model (1.1), it is still possible to find an

approximate solution of VI(Ω, F, θ) with an accuracy of O(1/t) based on the

first t iterations of the PRSM scheme (2.1). This estimate helps us better

understand the convergence property of the original PRSM (2.1).

Theorem 4.1 Let {wk} be generated by (2.1) and {w̃k} be defined by (3.1).

Let w̃t be defined as

w̃t =
1

t+ 1

t∑
k=0

w̃k. (4.1)

Then, for any integer number t > 0, w̃t ∈ Ω and

θ(ũt)− θ(u) + (w̃t−w)TF (w) ≤ 1

2(t+ 1)
‖v− v0‖2H , ∀w ∈ Ω, (4.2)

where H is defined in (2.7).
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Proof. First, because of (3.1), it holds that w̃k ∈ Ω for all k ≥ 0. Together with

the convexity of X and Y , (4.1) implies that w̃t ∈ Ω. Second, by taking α = 1 in

(3.15) (and using (w − w̃)TF (w̃) = (w − w̃)TF (w)) we have

θ(u)−θ(ũk)+(w−w̃k)TF (w)+
1

2
‖v−vk‖2H ≥

1

2
‖v−vk+1‖2H , ∀w ∈ Ω.

(4.3)

Summing the inequality (4.3) over k = 0, 1, . . . , t, we obtain

(t+1)θ(u)−
t∑

k=0

θ(ũk)+
(

(t+1)w−
t∑

k=0

w̃k
)T
F (w)+

1

2
‖v−v0‖2H ≥ 0,

for all w ∈ Ω. Use the notation of w̃t, it can be written as

1

t+ 1

t∑
k=0

θ(ũk)−θ(u)+(w̃t−w)TF (w) ≤ 1

2(t+ 1)
‖v−v0‖2H , ∀w ∈ Ω.

(4.4)
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Since θ(u) is convex and

ũt =
1

t+ 1

t∑
k=0

ũk,

we have that

θ(ũt) ≤
1

t+ 1

t∑
k=0

θ(ũk).

Substituting it in (4.4), the assertion of this theorem follows directly. 2

Let v0 = (y0, λ0) be the initial iterate. For a given compact setD ⊂ Y × <m,

let d = sup{‖v − v0‖H | v ∈ D}. Then, after t iterations of the PRSM (2.1),

the point w̃t ∈ Ω defined in (4.1) satisfies

sup
w∈D

{
θ(ũt)− θ(u) + (w̃t − w)TF (w)

}
≤ d2

2(t+ 1)
,

which means w̃t is an approximate solution of VI(Ω, F, θ) with an accuracy of

O(1/t) (recall (2.3)).

Remark 4.2 In the proof of Theorem 4.1, we take α = 1 in (4.3). Obviously, the
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proof is still valid if we take α ∈ (0, 1). Thus, a worst-case O(1/t) convergence

rate in ergodic sense can be established easily for the strictly contractive PRSM

(1.8). As we shall show in Section 5, this is less interesting because a nonergodic

worst-case O(1/t) convergence rate can be established for (1.8). We thus omit

the detail.

5 Convergence rate of (1.8) in nonergodic sense

In this section, we show that the sequence {vk} generated by the strictly

contractive PRSM scheme (1.8) is convergent to a point in V∗, and its worst-case

convergence rate is O(1/t) in nonergodice sense. Our starting point for the

analysis is the inequality (3.17), and a crucial property is the monotonicity of the

sequence {‖vk − vk+1‖2H}. That is, we will prove that

‖vk+1 − vk+2‖2H ≤ ‖vk − vk+1‖2H , ∀ k ≥ 0.
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We first take a closer look at the assertion (3.5) in Lemma 3.1.

Lemma 5.1 Let {wk} be the sequence generated by the strictly contractive

PRSM (1.8) and w̃k be defined in (3.1); the matrix Q be defined in (2.6). Then,

we have

(ṽk − ṽk+1)TQ{(vk − vk+1)− (ṽk − ṽk+1)} ≥ 0. (5.1)

Proof. Set w = w̃k+1 in (3.5), we have

θ(ũk+1)−θ(ũk)+(w̃k+1−w̃k)TF (w̃k) ≥ (ṽk+1−ṽk)TQ(vk−ṽk). (5.2)

Note that (3.5) is also true for k := k + 1 and thus

θ(u)−θ(ũk+1)+(w− w̃k+1)TF (w̃k+1) ≥ (v− ṽk+1)TQ(vk+1− ṽk+1),

for all w ∈ Ω. Set w = w̃k in the above inequality, we obtain

θ(ũk)−θ(ũk+1)+(w̃k−w̃k+1)TF (w̃k+1) ≥ (ṽk−ṽk+1)TQ(vk+1−ṽk+1).

(5.3)
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Adding (5.2) and (5.3) and using the monotonicity of F , we get (5.1) immediately.

2

Lemma 5.2 Let {wk} be the sequence generated by the strictly contractive

PRSM (1.8) and w̃k be defined in (3.1); the matrices M , Q and H be defined in

(2.4), (2.6) and (2.7), respectively. Then, we have

(vk − ṽk)TMTHM{(vk − ṽk)− (vk+1 − ṽk+1)}

≥ 1

2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT +Q). (5.4)

Proof. Adding the equation

{(vk − vk+1)− (ṽk − ṽk+1)}TQ{(vk − vk+1)− (ṽk − ṽk+1)}

=
1

2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT +Q)
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to both sides of (5.1), we get

(vk − vk+1)TQ{(vk − vk+1)− (ṽk − ṽk+1)}

≥ 1

2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT +Q). (5.5)

By using (see (3.4) and (2.8))

vk − vk+1 = M(vk − ṽk) and Q = HM,

to the term vk − vk+1 in the left hand side of (5.5), we obtain

(vk − ṽk)TMTHM{(vk − vk+1)− (ṽk − ṽk+1)}

≥ 1

2
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT +Q).

and the lemma is proved. 2

Now, we are ready to prove the monotonicity of the sequence {‖vk − vk+1‖2H}.

Theorem 5.1 Let {wk} be the sequence generated by the strictly contractive

PRSM (1.8) and w̃k be defined in (3.1); the matrix H be defined in (2.7). Then,
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we have

‖vk+1 − vk+2‖2H ≤ ‖vk − vk+1‖2H . (5.6)

Proof. Setting a = M(vk − ṽk) and b = M(vk+1 − ṽk+1) in the identity

‖a‖2H − ‖b‖2H = 2aTH(a− b)− ‖a− b‖2H ,

we obtain

‖M(vk − ṽk)‖2H − ‖M(vk+1 − ṽk+1)‖2H
= 2(vk − ṽk)TMTHM{(vk − ṽk)− (vk+1 − ṽk+1)}
−‖M(vk − ṽk)−M(vk+1 − ṽk+1)‖2H .

Inserting (5.4) into the first term of the right-hand side of the last equality, we

obtain

‖M(vk − ṽk)‖2H − ‖M(vk+1 − ṽk+1)‖2H
≥ ‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT +Q−MTHM).

The assertion (5.6) follows from the above inequality, the relationship (3.4) and
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(2.9) immediately. The proof is complete. 2

Now, we can establish a worst-case O(1/t) convergence rate in nonergodic

sense for the strictly contractive PRSM scheme (1.8).

Theorem 5.2 Let {wt} be the sequence generated by the strictly contractive

PRSM scheme (1.8). For any v∗ ∈ V∗, we have

‖vt − vt+1‖2H ≤
2(1 + α)

(t+ 1)(1− α)
‖v0 − v∗‖2H . (5.7)

Proof. First, it follows from (3.17) that

1− α
2(1 + α)

∞∑
k=0

‖vk − vk+1‖2H ≤ ‖v0 − v∗‖2H , ∀ v∗ ∈ V∗. (5.8)

According to Theorem 5.1, the sequence {‖vk − vk+1‖2H} is monotonically
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non-increasing. Therefore, we have

(t+ 1)‖vt − vt+1‖2H ≤
t∑

k=0

‖vk − vk+1‖2H . (5.9)

The assertion (5.7) follows from (5.8) and (5.9) immediately. The proof is

complete. 2

Notice that V∗ is convex and closed. Let v0 = (y0, λ0) be the initial iterate and

d := inf{‖v0 − v∗‖H | v∗ ∈ V∗}. Then, for any given ε > 0, Theorem 5.2

shows that the strictly contractive PRSM scheme (1.8) needs at most bd2/εc
iterations to ensure that ‖vk − vk+1‖2H ≤ ε. It follows from Lemma 2.3 that

wk+1 is a solution of VI(Ω, F, θ) if ‖vk − vk+1‖2H = 0. A worst-case O(1/t)

convergence rate in nonergodic sense for the strictly contractive PRSM scheme

(1.8) is thus established in Theorem 5.2.
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