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The context of this lecture is based on the publication [6]



1 Convex Optimization with 3 separable operators

We consider the linearly constrained convex optimization with 3 separable operators:
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min {61 (x)+02(y)+63(2) | Ar+By+Cz=b,z€ X, yc )Y, z€ Z} (1.1)

where 01 (x) : R™" — R, O2(y) : R™"? — R, 03(2) : R™> — R are convex;
AeR™*™M BeR™ "2, CeR™ ", beR™ X CR",Y C R and

Z C R"3 are given convex set. Let n = n1 + no + ns.

This optimization problem is equivalent to find (z™,y™, z*, \™) € €2, such that

’

where

Q=X xYxZxR".
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By denoting
/ x — AN
’ Y \ ( —BT')\ \
u=| y |, w= F(w) = o7y 7
) \ )/ \ Az +By+Cz—b )
and

0(u) = 01(x) + 02(y) + 03(2),

the optimal condition (1.2) can be written as

w* € Q, Ou)—0u*)+ (w—w)'Fw*)>0, Vweq.

For convenience, in this paper, we use the notations

v = 2 |, and V' ={(y", 2"\ | (=", y", 2", \F) € QF ).
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2 Full Parallel Splitting ALM

Full parallel splitting augmented Lagrangian method is a prediction-correction

method. First it generates a predictor:

1. From given (2%, 9%, 2%, A\¥), obtain ¥, §/* and Z*, by the following parallel

manner:
( _(\E\T k k
7" = Argmin { 01 (x) 5()‘ ) (Ax:By ;CZQ b) re X, (21a)
\ +5||Az + By" + Cz" = b||
( _ \K\T k k )
gjk = Argmin < b2(y) — (A") " (Aa™ + By + Cz b) yeyY, (2.1b)

+5||Az* + By + Cz* — b||?

[ 05(2) — 0BT (Az* + By* + Cz — b)

z € Z 3 (2.1¢)
—1—§\|Aq;k + By* 4+ Cz — b||?

FF = Argmin <

2. Update \E by

A= \F — B(AZ* + ByF + CFF —b). (2.1d)
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Note that the solution (2%, %, Z2¥) € X x YV x Z of (2.1a)-(2.1¢) satisfies

y

01(z) — 01(3*) + (x — 2%)"{-A" N + BAT (AZ* + By* + CzF —b)} >0
$02(y) — 02(5%) + (y — §°)" {—B"\* + BB (Az* + B§* + Cz* —b)} > 0
z

(2.2)
forall (x,y,2z) € X x Y x Z. Using

A= \F — 3(AzF + BjF + CFF — b)

and by a manipulation, (2.2) can be rewritten as (:Ek, g~ 5’“) ceX x)Y x Z,

T ~
r—a"\ [(—ATA 4 BAT[B(Y" - ") + C(z" - )]
O(u)—0(a")+| y — 7 —BTX* + BBT[A(z* — 2*) + C(zF - %) | >0,
z — 5" —CTNf + BCT[A(z® — &%) + B(y® — §%)]
(2.3)

forall (z,y,z) € X x Y x Z. Combining the last inequality with (2.1d), we
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have
(e—a"\ ({  —a"% )
O(u) — (") + y—9" < —BTA"
z— 3" —_OT)\k
\)\_}’\k) k\Aik‘FB?]k—i—Cik—b)

BT
B p | AT+ O - + 0" - 2Y)
\ 0 )
/6A51 0 0 0\ [ —a"\
0 BBB 0 0 T

> > 0, Yw € .(2.4)




Based on the above analysis, we have the following lemma.

Lemma 2.1 Letw® = (z*, 4", 2%, 5\’“) € () be generated by (2.1) from the
givenw® = (zF,y*, 2% N\F). Then, we have

(@* — w*) " Hw" — @) > (@" —w*)" (F(@") + n",a"),  (25)
where
(A7

BT
n(u®,a") =8 [A(z" —3")+ B(y* ") + C(z" - £")] (2.6)

\ 0/

and
[BATA 0 0 0 )
0 BB 0 0
H = (2.7)
0 0 pCtC 0

\ 0 0 0 il
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Proof. Setting (x,y, 2, \) = (z*,y*, 2*, \*) in (2.4), the assertion follows
directly. [

Since F is monotone and w" € (), it follows that
(0" — wH)TF(@") > (@® — w")TF(w*) > 0. (2.8)
In addition, by using Ax* + By* 4+ C'z* = b and

~

B(AZF + BjF + CzF —b) = (A" — \F),

= (A" —2%) + B(y" — ") + C(z" - 2))" B(A3" + By* + C2" - b)
= (A= MATA@E" - 3% + By —§%) + O(" - 2°)). (2.9)
(

Lemma 2.2 Letw" = (ZF, gjk, zk 5\"“) € () be generated by (2.1) from the



given w® = (2%, y*, 2% \F). Then, we have
(w* — w*)T H(w® — @) > o(w®, a"), Vw* e Q,

where

k ~k

p(w”, ") = ||w® — "

In addition, we have

2 -3
2

Proof. First, using (2.5), (2.8) and (2.9) we obtain that

p(w®, wk) > Jw® —@"||F.

> (A= (A@Y - 2%) + By* — %) + C(2% -

+(AF = AT (A(2* — 39+ B(yF — M) +C (7 - 2
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(2.10)

). (2.11)

(2.12)

).

The first assertion of this lemma follows from the last inequality and the definition

of (w”, ") directly.



Now, we turn to the second assertion (2.12). Notice that

(aF — 5\ [ BATA 0 0 %AT\ [k — 7%
2k zk 0 0 pctc ic* 2k zk

(\/BA(:LJC —:Z‘k)\ ( Inm, 0 0 ;Im\ (\/BA(:Uk :%k)\
_ | VBB -3 0 Im 0 3In|| VBB —3")
VBC(2* — z* 0 0 In. i@, VBC(2* — z*
\VIBOF =3 ) \ 3l 3w 30n In ) \VI/BO* = 3%))

Because the eigenvalues of the matrix
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(1 0 0 %)
1
010 . arel,landl:l:@,
0 0 1 4
1 1 1
\5 53 1)
2—+/3

The smallest eigenvalue is == Therefore,

[ VBAGE* — )\ [ VBAG — 7))
@(wk ~k:> > 2—3 VBB(y"* — ") VBB(y"* — ")
! = 2 VBO(2* — 2" VBC(2" — 2
\VI/BOE =35 )\ VITBOF =35
_ 2 _2\/§Hwk —w"||%.  Thelemmais proved. O

According to Lemma 2.2, we have

2 —/3
2

This give us the possibility to produce a new iterate which is more closed to the

(" —w)" H(w" — ") > p(w®, @) > |w® — "%




solution set by the following correction.

Correction: ' Based on the predictor by (2.1), update the new iterate whtt by:

wrh Tt = wk — o (wf — @),  ar=~vaf, v€(0,2) (2.14a)
where
k o~k
o pwt,w)
— . 2.14b
7 ot =i =1
By using (2.10) and (2.14), we obtain
lw ™ —w* |l = l(w® = w*) = qag(w® - a")|F
= |lw® —w* |5 — 2vaj (w® —w*)" H(w" — a")
+72 () lw* — ||
< lw® —w|[f = 2vage(w”, @)
+72 (0)?[Jw® — @* (1%
< w® —w*f = (2 = Yage(w®, ). (215)
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In comparison with the computational load for obtaining (Z¥, %, Z%), the
calculation cost for step-size . is slight.

Convergence ' Using (2.14) and (2.14b), we obtain

72 = )(7 - 4V3)
4

! |w® — "%

2 k 2
— 0y < ot —w | -
& B. S. He, Parallel splitting augmented Lagrangian methods for monotone
structured variational inequalities, Computational Optimization and Applications,
42, 195-212, 2009.

3 Partially Parallel Splitting ALM

In the partially parallel splitting ALM, x is an intermediate variable. The iteration
begins with vF = (y*, 2%, \¥) and produces new iterate v**1. It is still a
prediction-correction method.
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Prediction: '

1. From given (yk, 2k )\k), obtain ¥, % and Z*, by the following partially

parallel manner:

( (KT k ko

#* = agmin { 1@ B(A A By vz =0) | x b (gag)
\ +5||Az + By" 4+ Cz" = |
( _ NKNT [ g~k k )

7" = Argmin < O2y) — (A7) (AZ"+ By + Cz" —b) ye€), (31b)

+8)|Az* + By + C2* — b|?

[ 05(2) — WO)T(AZ* + By* + Oz — b)

~k .
zZ" = Argmin < ’
+5)| A" + By" + Cz — b|?

2. Update Ak by

A= \F — B(AZ* + ByF + CzF —b). (3.1d)

Note that in (3.1b) and (3.1c), we use Z* generated by (3.1a).
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Analysis ' The solution (:Z'k, g~ 5’“) e X XY x Z of (3.1a)-(3.1c) satisfies

y

01(z) — 01(3") + (x — ") {-A" N + BAT (AZ" + By* + Cz" —b)} >0
$02(y) — 02(5%) + (y — §°)" {—B"\* + BB" (Az" + Bj* + C2* —b)} > 0

L 03(2) — 05(Z%) + (= = 2)"{-C"\* + BC" (43" + By* + Cz* —b)} > 0
(3.2)

forall (z,y,2) € X x Y x Z.Using \* = \F — B(Az* 4+ ByF 4+ CzF —b)

and by a manipulation, (3.2) can be rewritten as (if:k, T 2’“) eX x)Y X Z,

T ~
x — &k —ATNF 4 BAT[B(y* — §%) + C(2F — 2%)]
Ow)—0@@" )+ y—g" | | -B"X*+8B"[ 0  +C(E"-2M) | >0,
z— 3" —CTXNF 4+ BCT[B(y* — §%) + 0 ]

forall (z,y,z) € X x Y x Z. Combining the last inequality with (3.1d), we
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have
(o= \ ({  —A"™% )
_ gk _ BTk
Olu) = B + Z — Zk | _CT )k
\A—S\k/ \\Aif?kﬂLBz)’“rCzk—b)

[0 0 0\
T y —y
BB'B 0 0
T sh_Gk [V >0, vwe Q.  (33)
0 BCC 0 -
\ 0 0 11} AT —
g m J



Based on the above analysis, we have the following lemma.

Lemma 3.1 Let " = (2%, 3", 2%, S\k) € () be generated by (3.1) from the
given v* = (y*, 2%, \¥). Then, we have

(@ — o) H@" = 3%) > (0" —w")" (F(@") + n(u”,@")),  @4)

where
(AT
BT
n(u®,a") =8 (B(yk—gljk) -+ C(zk—ék)) (3.5)
CT
\ 0/
and
BB B 0 0
H = 0 gcrtc o |- (3.6)
1
0 0 EIm
Proof. Setting (x,y, 2, \) = («*,y*, 2%, \*) in (3.3), and using v = (y, 2, \)

the assertion follows directly. [
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Since F' is monotone and w* € €, it follows that
(0* — wH)T F(@") > (0% — w)TF(w*) > 0. (3.7)

In addition, by using Ax*™ + By* 4+ C'z* = b and

~

B(AZF + BjF + CzF —b) = (A" — \F),
we have
n(uk,ﬂ,k)T(’J}k L w*)
B(y" —§") + C(2" — 2%))"B(Az" + By" + Cz* —b)
B(y* — %) + C(2F — 2F)T(AF — Nk, (3.8)

=
=

Lemma 3.2 Let " = (%, ", Z¥, 5\"“) € () be generated by (3.1) from the
given v = (y*, 2% \*). Then, we have

(v — T H @R — %) > (¥, %), Vw* e QF, (3.9)
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where

p(v*,0%) = [[o* = o¥||%

+(\F = MT(B(F — §%) + C (2% — 2%). (3.10)

Proof. First, using (3.4), (3.7) and (3.8) we obtain that

(’f)k . ”U*)TH(Uk . ,z'}k)
> (M =T (B - )+ C(=" - 2Y)).
The assertion of this lemma follows from the last inequality and the definition of
o(v*, %) directly. O

Lemma 3.3 Let " = (%, 3", 2%, 5\’“) € () be generated by (3.1) from the
given v® = (y*, 2%, \¥). For H defined in (3.6) and p(v"*, %) defined in
(3.10), we have

(0", 0%) = v — 0" % (3.11)

2 -2
2



Proof. According to the definition of (3.10), we obtain

(v, %)

T
yk_gk BBTB

— Zk . 2]{:
\F— S\k
VBB(y* — g")
= VBC (28 — ZF)
1/B(AF — AF)

Because the matrix

= [[o* = o*||%

+ (AF

0

1
5B

= O =
= = O

- OT(B(y* - ") + C(=" - 2))
0 %BT ykz . gk
BorCc LCT | | 2F-zF
5C 5Ln) \N' =\
0 I, 3ln f(](z —Z )
Iy 2L, I V 1/B(NF

— N N

XVI -
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is positive definite and its eigenvalues are 1 and 1 & g thus, we obtain

sy (VB (VB -
ok, > S| VBoer -2 || VoG- )
VI/BOE = AF) L/B(AF = AF)

e T

- 9 H>

and the assertion is proved. [

Correction ' Based on the predictor by (3.1), update the new iterate phtl by

k ~k

k41 _ K — %),  ap=va5, ~v€(0,2) (3.12a)

VT =" — ag(v

where
p(vF, %)
[P — 0% 1%

ay = (3.12b)
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By using (3.9) and (3.12), we obtain

[ — o[ = [[(0% = v") = yag (v — )|

5 (

2 — 2vag (v — )T HW" — %) + 4% (ap)? " — 08| %
2 — 2vag(v" ) + 2 (ag)? ot — 5|3

: )
H

— (2 = 7)agp(v”, "),

|
S

— ¥

IA
c
&
|
c
*

(3.13)

|
S
|
S

In comparison with the computational load for obtaining (2%, %, Z%), the

calculation cost for step-size . is slight.

Convergence ' Using (3.11) and (3.12Db), it follows from (3.13) that

(2 —7)(83 - 2v2)
2

[Chal lv* —o* %

— V|7 < " =t -

2—/2
2

the fixed step size ar = o € (0,2 — +/2), the method is still convergent.

From (3.11) we know that oz,’; > . In the correction step, we can also take
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4 Extension to problems with 4 operators

We consider the following optimization problem with 4 separable operators:

where 0;(x;) : ®™ — R, is convex, A; € R™*™ X; C R™ is given convex
set,7 = 1,...,4;b € R™. This optimization problem is equivalent to find
w* = (z7, x5, 13,5, \*) € €2, such that

(

01(z1) — 01(z7) + (z1 — 7)) (—AT X*) >0,
O2(x2) — O2(x3) + (w2 — 3)" (A A7) >0,

< (93(:133) — 93(33;,) + (333 — xE)T(—AZA*) > 0, YV w e €, (4.2)
(94(334) — 94(582) -+ (564 — CEZ)T(—AZ)\*) >0

\ ()\ — )\*)T(Alaf{ + Asxs + Asxs + Asxy — b) >0,

where
Q:X1XX2XX3XX4X§Rm.
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By denoting
AT
P AT e
T = L2 , W= T3 F(w) — —AgA )
L3 Iy —AZ)\
Ve ) Uy \ S A=

and  O(z) = 01(x1) + O2(z2) + O3(x3) + 04(x4),

the optimal condition (4.2) can be written as

w* € Q, 0(x)—0x*)+ (w—w)'Flw*) >0, YVweq.

Full parallel splitting augmented Lagrangian method '

If we extend the full parallel splitting augmented Lagrangian method to solve (4.1),

similarly as in Lemma 2.2 (see (2.10) and (2.11)), we have

(w* — w*)T H(w® — @%) > o(w®,a%), Vw* e Q, (4.3)
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where
4
p(wh, @F) = [lw” — |17 + (N = AT (D) Ag(af — 7)) (44
i=1
and .
H = dlag(ﬁA{Ala 6A5A27 BACZ{A?M BAZAZH Blm)

Note that, similar as (2.13), we have

T

(VBALEY =&\ (1T 0 0 0 12\ [VBAi(ek — 7))
VBAs(2h — %5) 0 I 0 0 I2||+BAx(zh —z5)
p(w", ") = [ VBAs(x5 —25) | | 0 0 I 0 Ij2||BAs(al —i¥)
VBAs(xh — &5) 0 0 0 I I2||+BAs(zh -z
\WVI/BOF =38 ) \ij2 2 /2 72 1) \\/T/B(\F = X))

In other words, for the problem with 4 separable operators, if we use the full
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parallel splitting augmented Lagrangian method, we will met a matrix
(1 0
0
0
0

\ 3

The above matrix is positive semi-definite and its eigenvalues are 0,1, 1,1 and 2. The

_—

—_ NP NF NN

N—

N, O = O O
N~ = O O O

N O O =

vector (1,1,1, 1, —2)T is the eigenvector related to the eigenvalue 0. This means, even
through ||w” — @*|| & # 0, it can not guarantee that @ (w”, w"*) > 0. Therefore, we

suggest to use the partially splitting augmented Lagrangian method.

Partially parallel splitting augmented Lagrangian method '

In the partially parallel splitting augmented Lagrangian method, 21 is an

intermediate variable during the iterations. After solving the x1-subproblem, then
solve the T2, T3, T4-subproblems in the parallel manner !

Prediction ' Similarly as the prediction step (3.1) for problems with 3 operators
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From given (z5

:Elf = Argmin <
~k )
To = Argmin <
~k )
T3 = Argmin <
~k .
T, = Argmin <

273337

k

(91 (xl) — ()\k)T(Alatl +A2$S+A3$§+A4$Z—b)
—I—§HA1£C1 + AZCCS + AsiBg + A4$Z — bH2

\

92(:62) — ()\k)T(Alil?lf—FAQZEQ —|—A3$§—|—A4$Z—b)
+5)|A1&F + Asxa + Aszh + Asxh — b))?

(93(333) — ()\k)T(A152‘1 —|—A233]2€—|—A3333—|—A4CEZ—[))
—|—§||A19~le + Asxh + Azxz + Agxl — b))

(94(334) — ()\k)T(Alflf+A2$§+A3$§+A4$4—b)

Update \E by

+5 | Ay + Aozl + Asxl + Agzs — ||

r1 € X1

Moo= 2\E — B(AEY 4+ A3h + Asik 4+ Auzh —b).

xfj, )\k), obtain 0" by the following partially parallel manner:

\

S (4.5a)
> (4.5b)
> (4.5¢)
S (4.5d)

(4.5€)

Note that in (4.5b), (4.5c) and (4.5d), we use i’f generated by (4.5a).
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Similar as (3.3), for the ik generated by (4.5), we have

(w-at\ [ —ATN )

To — &5 — AT NF
O(z) — &)+ | 25 — &k < —ATNF
T4 — 532 —AZAk

\ A —\F ) \\Alflf+A2f§+A3f§—|—A4fi—b)

[ AT

Ay
+B8 | Aj [AQ(CBS — 5) + As(zf — &5) 4+ As(zf — :%Z)}
Al
\ 0 )
[ 0 0 0 0) 7 — 2
BAIA, 0 0 0 gk
+| 0 BAlA; 0 0 gz 0 YweQ. 48
0 0 BAA, o ||t
Lo 00 an)\X e




For convenience we use the notations

L2

v = ii and V* = {(x3, x5, x5, \") | (], 25,25, x5, \") € Q*}

A

Based on the above analysis, we have the following lemma.
Lemma 4.1 Letw” = (z%, 75 7% 7% A¥) € Q be generated by (4.5) from

the given v* = (2%, 2% 2% \¥). Then, we have

(@ — o) H@" —3") > (" —w")" (F(@") +n(", %)), @7

where
H = diag(BA] As, BAT A5, BAT A, %m 48)
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and

=B | AT | [Aa(zh—75)+ As(ah —75) + Au(af —25)]  (49)

Lemma 4.2 LetwF = (2%, &5, &%, &k \F) € Q be generated by (4.5) from

the given v* = (25, 2% 2% \¥). Then, we have

(vF — )T HW" — %) > p(®, o%), Vo* e V*, (4.10)

where

p(v*,0%) = [[o* = 8*||%

+(AF = AT [ Ag (2 —35) + Ag (ah —35) + Ay (2 —35)] (4.11)

The proofs of Lemma 4.2 is similar as those in Lemma 3.2.
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Lemma 4.3 Let 0" (5:’1'“, ik @k ik N\F) € Q be generated by (4.5) from

the given v* = (2%, 2% 2% N¥). For H defined in (4.8) and p(v"*, %) defined

in (4.11), we have

o(v*,5) > 22 f

|o® — 5F|%;. (4.12)

Proof. According to the definition of (4.11), we have

Sp(vkalak> — HU — U

mm(mg_fg)\T/Im 0 0 15\ [ VBAs(ak—ih)
| VBAs(2f—25) 0 I, 0 1irI, VBAs(zk—ihk)
VBAL(xh —Tk) 0 0 I, 1iI, VBAL(zh )
\WVITBON =3 \ L 31w 3T I ) \VIJBOE - 30))
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Note that the eigenvalues of the symmetric matrix

(1 0 0 1)
8 (1) (1) i are 1, land 1+ %32,
\z 5 5 1)
and the smallest eigenvalue is 2_2\@. Therefore,
T
(VBAh—55)\ [ VBA(h—75)
S ) > 2— 3 | VBAs(x§—73) VBAs (25 —15)
2 VBAy(xf —TF) VBAy(xf —TF)
\WVI7BOH =39 ) \VITBO: — 3
= B,

and the assertion is proved. O



Correction ' Based on the predictor by (4.5), update the new iterate phtl by

Update the new iterate v* 11 by

Pt =0 — (0 — %), ap=~al, ~v€(0,2) (4.13a)
where
k =k
. (v, ")
— 4.13b
P 1

By using (4.10) and (4.13), we obtain

[ = < 0% = 0" (IF = (2 = y)agew”, 7).

Convergence ' Using (4.12) and (4.13b), we obtain

¥(2 = 9)(7 - 4V3)
4
This inequality (4.14) is essential for the convergence.

”Uk+1

— vt < oF ot - [v* = o¥|[F. (4.14)

XVI -
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5 Conclusion Remarks

All the methods in this note are prediction-correction methods. The predictor
offers us a descent direction of the unknown function £ ||w — w*||%, and the

correction produces the new iterate which is more closed to the solution set.

The first ADMM-based prediction-correction method was published by Ye and
Yuan [13]. For solving the problem (1.1), we suggest to use the method in Section
3, whose prediction and correction is (3.1) and (3.12), respectively. Even though it
needs to compute the step size in the correction step in each iteration, the cost is
usually small in comparison with the computational load for solving the

subproblem in the prediction step.

Since 2012, we have some new publication about the multi-block problems. First,
without correction, the direct extension of the ADMM for the problem (1.1) is not
necessarily convergent [2]. For multi-block problems, we suggest to use the
methods [7, 8, 9, 11].
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