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The context of this lecture is based on the publication [8]



1 Introduction

In the literature, the alternating direction method of multipliers (ADMM) proposed originally
for the following linearly constrained separable convex programming whose objective
function is separable into two individual convex functions without crossed variables:
min  601(x1) + 02(z2)
s.t. A1z + Asxs = b, (1.1)
1 € X1 and z2 € X2,

where 61 : R — Rand 6> : "2 — R are closed proper convex functions (not
necessarily smooth); X7 C R™ and Xy C R™2 are closed convex sets; A; € R\ X™

and Ay € RX™2 are given matrices; and b € R' is a given vector.

The augmented Lagrangian function of the problem (1.1) is
EB (5131, T2, )\) = 04 (951)—|—92 (ZCQ)—)\T(Al.Tl—I—AQZ'Q—b)—l—g HAlaﬁl—l—Azxz—bHQ,

where \* € R!is the Lagrange multiplier associated with the linear constraints and

B > 0 is the penalty parameter for the violation of the linear constraints.
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The iterative scheme of ADMM for solving (1.1) is as follows:

( o5t € argmin{Ls(x1, 25, A¥)}

= argmin{61 (z1) + Z||(A1z1 + A225 — b) — %)\kw | z1 € X1},

it € argmin{Ls (x5t 22, \*)} (1.2)
= argmin{0z(z2) + 5| (A2 ™" + Aswa — b) — $A°|° | 22 € A2},

N = AR B(A gt 4+ Apahtt —p),

/\

\

In this paper, we consider the general case of linearly constrained separable convex

programming with m > 3:

min > 7, 0i(zi)

Z;n:l A;x; = b; (1.3)
ri € Xy, 1=1,---,m;
where 0; : R"* — R (i = 1, ..., m) are closed proper convex functions (not
necessarily smooth); X; C R™? (z = 1,...,m) are closed convex sets;

A; € RX™M (4 =1,...,m) are given matrices and b € R is a given vector.



Because of the efficiency of ADMM for (1.1), a natural idea for solving (1.3) is to extend the

ADMM (1.2) from the special case (1.1) to the general case (1.3).

In fact, even for the special case of (1.3) with m = 3, the extended ADMM is not

necessarily convergent [2].

In this paper, we provide a novel approach towards the extension of ADMM for the problem
(1.3). More specifically, we show that if a new iterate is generated by correcting the output
of the ADMM with a Gaussian back substitution procedure, then the sequence of iterates is
convergent to a solution of (1.3). In this sense, we prove the convergence of the extension
of ADMM for (1.3). The resulting method is called the ADMM with Gaussian back
substitution from now on. Alternatively, the ADMM with Gaussian back substitution can be
regarded as a prediction-correction type method whose predictor is generated by the
ADMM procedure and the correction is completed by a Gaussian back substitution
procedure. We prove the convergence of the ADMM with Gaussian back substitution under

the analytic framework of contractive type methods

Throughout, we assume that the solution set of (1.3) is nonempty 2.

2In our published paper [8], we assume that AzT A; is nonsingular, this assumption is not necessary.
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2 The variational inequality characterization

In this section, we derive the first-order optimality condition of (1.3) and thus characterize
(1.3) by a variational inequality (VI). As we will show, the VI characterization is convenient
for the convergence analysis to be conducted.

By attaching a Lagrange multiplier vector A\ & R to the linear constraint, the Lagrange

function of (1.3) is:

L(xl,xg, R )\) = Zﬁz(xz) — )\T(Z A;x; — b), (2.1)
=1 1=1

which is defined on
Q::Xlxng---mex%l.

Let (x’{, Loy eon, Lo, )\*) be a saddle point of the Lagrange function (2.1). Then we have
L)\eifel(xiamga'” 73:‘:17)\) S L(QZ‘T,CB;, 733:17)‘*)
S LCIZ‘Z'EXi (izl’___,m)(xl,xQ,---,xm7>\*>-

It is evident that finding a saddle point of L(x1, 2, ..., Tm, A) is equivalent to finding

XVIIl - 5



O (Tim) — Om (Th) + (Tm — ) {—ALN} > 0,
A=X)" (X, Ay —b) >0,

\

forallw = (x1,x2, - ,Tm,\) € 2. More compactly, (2.2) can be written into the
following VI:

0(z) —0(z*) + (w —w)"F(w*) >0, YVweQ, (2.3a)
where
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T2 —Ag)\
w = ; and F(w) = : . (2.3b)
Tm — AL\
\ A \ S, A~ b )

Note that the operator F'(w) defined in (2.3b) is monotone. Especially, we have
(w—w)" (F(w) — F(w)) = 0. (2.4)

In addition, since we have assumed that the solution set of (1.3) is not empty, the solution

set of (2.3), denoted by {27, is also nonempty. In addition to the notation of

w = (x1,x2, * ,Tm, \), for any integer number k we also use the following notation:
v= (T2, ", Tm, \).

Moreover, we define

V* — {(x§7 .. 733:17)‘*) ’ (:I:’{,:B;,. v ,[U:ﬂ“)\*) = Q*}
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3 ADMM with Gaussian back substitution

In this section, we show the combination of the extended ADMM scheme (1.2) with a
Gaussian back substitution procedure, and derive the resulting ADMM with Gaussian back
substitution for solving (1.3). We also elucidate how to realize the Gaussian back

substitution for some special cases of (1.3).

To present the Gaussian back substitution procedure, we define the matrices:

(1 o 9\

I, I

K 0 0 0 Il )m_BbCks



and

P = diag(\/BAz2, \/BAs, ...,/ BAm, \/gll), D=P'P (3.2)

Note that for any 5 > 0, from Pv”®, we get (Azxs, -+, Ak, A\¥) very easily. The
matrix L defined in (3.1) is a non-singular lower-triangular block matrix and D defined in
(3.2) is a symmetric positive definite matrix. In addition, according to (3.1) and (3.2), we

easily have:
(L =L 0 - 0 0)
0
e 0 . (3.3)
o --- 0 I; —I; 0
o --- 0 0 I; 0
K 0 . 0 0 0 1)

m-Blocks

which is a upper-triangular block matrix whose diagonal components are identity matrices.
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Algorithm: ADMM with Gaussian back substitution for (1.3):

Let 8 > 0and o € [0.5, 1), With the given iterate Pv* = P(xk, -, xF  \F).
Step 1. ADMM step (prediction step). Forz = 1,...,m, obtain a?f in the forward

(alternating) order by solving the following x;-problem:

min{0;(z:)+ 51| 1 AT + Aimi+ 3T A —b)— X7 i € X}
(3.4a)
and set

A= 2P — B AES — D). (3.4b)

Step 2. Gaussian back substitution step (correction step). Correct the ADMM output

W" in the backward order by the following Gaussian back substitution procedure and

generate the new iterate PyFtlL.

L"P*Th — o) = ozP(@k — fuk). (3.4c)

where the matrices L and P are defined by (3.1) and (3.2), respectively.

Note that the k-th iteration starts with a given (Agacg, oo At Ak), and offers the
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1 .

new iterate (A2$k+ Amka )\kH) Only for analysis convenience, we use

Pv® and Pv* Tt In any way, the variable x1 is only an intermediate variable.

Recall that the matrix L in (3.4c) is a upper-triangular block matrix. Thus, we call the
correction step (3.4c) is a Gaussian back substitution, and it is very easy to execute. In
fact, as we mentioned, after the predictor is generated by the ADMM scheme (3.4a) in the
forward (alternating) order, the proposed Gaussian back substitution step corrects the
predictor in the backward order. Since the Gaussian back substitution step is easy to
perform, the computation of each iteration of the ADMM with Gaussian back substitution is
dominated by the ADMM procedure (3.4a).

To show the main idea with clearer notation, we restrict our theoretical discussion to the
case with fixed 3 > 0.

The main task of the Gaussian back substitution step (3.4c) can be rewritten into
Pv*tt = Pv* —aL7TP(W* — ). (3.5)

In fact, we can choose the step size dynamically based on some techniques in the

literature (e.g. [10]), and the Gaussian back substitution procedure with the constant o can
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be modified accordingly into the following variant with a dynamical step size:

Pu*tt = P — o LT P(0F — o%). (3.6)
where
. T =B + T =G
) - =0
[ BATA, BATAs - BATA, AY
BATA; BATAs - BATA, AT
G = : : : _ X (3.8)
BAT A, BAT Ay ... BATA, AL
S e

and v € (0, 2). Indeed, for any 8 > 0, the symmetric matrix () is positive semi-definite.
Then, for given v" and the ©* obtained by the ADMM procedure (3.4a), we have that

2
)

3 L 5 1 -
W —8*5 =8 || Ai(zf - 9| + BH)\’“ — 3
=2
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and
2

[v* — 3|5 = 8

> Ailad =) + (A =X
1=2

where the norm ||v||%, (||v]|&, respectively) is defined as v! Dv (v! G, respectively). In

m-+1

fact, it is easy to prove that the step size o/, defined in (3.7) satisfies % < a; < 5

4 Convergence of the proposed method

In this section, we prove the convergence of the proposed ADMM with Gaussian back
substitution for solving (1.3). Our proof follows the analytic framework of contractive type

methods, and it consists of the following three phases:

1.) Prove that the sequence generated by the proposed ADMM with Gaussian back
substitution is contractive with respect to V*.

2.) Derive the convergence based on the Fejér monotonicity of the sequence generated by
the proposed ADMM with Gaussian back substitution.

Accordingly, we divide this section into three subsections to address the tasks listed above.



XVl - 14

4.1 Verification of the descent directions

For this purpose, we first prove two lemmas.

Lemma 4.1 Let " (:Z‘If, T P S\k’) be generated by the ADMM step (3.4a)
from the given vector Pv* (:1:2, ., xE  A\F). Then, we have
FeQ, 0(x) - 0EF") + (w—a") F(@") + (z — &")" da(z", 2")
> (v—")"di(v*,0"), YweQ, (4.1)
where
(BAgAQ 0 0\ (932—33]5\
. . k  ~k
BATA, pATAs Al
d1 (Uk7 ~k) — )
BAL Ay BAL A3 .- pBAL A, 0 ||z -2k
K 0 0 0 %Il) \)\k_j\k:)
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and

(2™, 3 =6 0 | (DAl — ). (4.3)

\an )

Proof. Note that &7 € arg min{6;(x;) + §||AmZ — bi||?|z; € X;} is equivalent to

ff € A, (9@(5137,) — 97,(53,’:) -+ (:Ez — ff)TﬁA?(Azﬁvﬁf — bz) >0, Va; € AX;.

Since :’f:ff is the solution of (3.4a), forte = 1,2, ..., m, according to the optimality
condition, we have
e Xy, 0i(xs) — 0:(3F) + (xi — a7) T {—AT N
—'—ﬁAT(ZZ ACE? + Z?:i+1Aj$§ — b)} >0, Va; € X;.4.4)

J=1

By using the fact (see (3.4b)) \* = A\F + B, A;% — b), thus, we have

j=1
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Substituting it in (4.4), we obtain
e Xy, 0i(xs) — 0:(3F) + (xi — a7) T {—AT N
+BA] (X0, Aj(xf — 7))} >0, Vo € Xy (45)

It follows from (4.5) that * € X and

e X, 0(x)—0(z")+

T g -~ )
([ w-at ([ At (AT (S, At - )
ro — b — AT NP Ay (XTLg As(af — 7))
T3 — T4 < —Az A" 5 Az (27, Ay () — 7)) =0,
Tm—1— Tm—1 — AL N\ Al (Am(ivﬁm — 507]3@))
~k Tk
\ Lm = Lm ) \K —AmA ) K 0 )J

for all z € X'. Adding



XVl - 17

T
(2a—a5\ [ AT(Aa(al—35) )
Ty — T4 A3 (2322 A; (xf - 57;6))

\om — 3% ) \AL(Z, A, — 35) )

T ~
[(wr—af \ [ —ATX + BAT (7, Aj(a
2 — 75 —ATN 4+ BAT (X)L, As(a

\am — 3k ) \—ALNE 4 BAT (S, Ay (ah — 25)) J

'V

T — T, BA, (Z?:Q Aj (5’3? - jﬁ))
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Because that ) /" A;35 — b= %(Ak — X\F), we have

(A=A —b) = (=M SV =X

j=1

Adding (4.7) and the last equality together, we get w* € W and

(ot \ [ ATAk+5AT(Z_2A<? i) )
o — 7 —ATNF +6AT(ZF i(z5 — 7))
0(z) — 0(z") + : '
T — T CATF 4 BAT (>, A — &)
A=)\ s A - /

[(wa—dh \ [ BAT(ZZ, Ak - ) )

> : : . , YVw el
Tm —?fn BA;, (Z?:z Aj (@I; — T >)
PP U A W VP L O J

Use the notations of F'(w), d1 (v¥, ©*) and da (2", "), the left hand side and the right
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hand side of the above inequality can be written as
0(z) — 0(Z") + (w — ") F(@") + (z — ") da (2", 2")

and

(U - 6k)Td1 (vka 6k)7

respectively. Thus, the assertion of this lemma is proved. [

Note that the d1 (v*, ©*) depends only on v* and #*, while do (", £*) is determined by
both 2" and &~ .

Lemmad.2 Letw" = (&%, &5,..., 2k, S\k) be generated by the ADMM step (3.4a)
from the given vector Pv* = P(x%,... %  A¥). Then, we have
m
(@ —v")Tdi (0", 8%) > (A" = M) (O Aj(af — 7)), Yo" eV, 8
j=2

where dy (v*, ") is defined in (4.2).
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Proof. Since w™ € (1, it follows from (4.1) that

> 0(z") — 0(z") + (" —w)TFW) + (3" — ") da (2", 75). @.9)

We consider the right-hand side of (4.9). By using (4.3), we get

0(z") — 0(z*) + (0" — w*)" F(@) + (&" — ™)  do (2", 27)
= 0(z") —0(z") + (@" — w*)" F(a")
+(Z Aj(zh — :E?))TB(Z Aj(E8 —a3)). (4.10)

Then, we look at the right-hand side of (4.10). First, by using the skew-symmetry of F'

(2.4) and the optimality of w™, we have

0(z") — 0(z*) + (0" — w*)" F(@")
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For the last part of the right hand side of (4.10), because

m

Zij;‘ =b and B(Z Aj£? —b) = A — S\ka
j=1 g=1

it follows
Ol —2) 80O " A —af) = O Aj(f —5) " (\F = b,
Jj=2 j=1 j=2

Finally, from (4.10) that

0(z") — 0(z*) + (0" — w")" F(w) + (&" — %) da (2", 2)

> (A =M 0A) - i), (4.11)

j=2

Substituting (4.11) into (4.9), the assertion (4.8) follows immediately. [l

Since (see (3.1) and (4.2))

di(v*, ") = PTLP(W" — "), (4.12)
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consequently from (4.8) follows that

(0" —v")" PTLP(W —5") > (\*=M)T ()~ Aj(af—&})), Vu* € V*. (4.13)

Now, based on the last two lemmas, we are at the stage to prove the main theorem.

Theorem 4.1 (Main Theorem) Let 0" = (%%, %5,..., %%, 5\’“) be generated by the
ADMM step (3.4a) from the given vector Pv® = P(:cé’, oz )\k). Then, we have

(F —v") T PTLP (" ") > %||vk—@k|\%+%|\vk—@kué, Vo' € V", (4.14)
where L, P, D and GG are defined in (3.1), (3.2) and (3.8), respectively.
Proof First, for all v™ € V™, it follows from (4.13) that
(v* — T PTLPOW" — &%)

> (v — T PTLP(W® — %) + ( 'O A — &5)).(4.15)

Jj=2

Now, we treat the first term of the right hand side of (4.15). Using the matrix L and P (see
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(3.1) and (3.2)) , we have
(v* =T PTLP(W* — &%)
T
(ah—ab\ (BATA, 0 0\ [ak-ab)

— : : A i : N (VRTS
k. — gk BAY Ay - BAL A, 0 k. — gk

e U ) e

Let us deal with the second term of the right-hand side of (4.15). We have

\ T(iAj(fEf—~
(a5 ) (0 0 o) [ ab-at )

_ : L : (4.17)
L o ... 0 0 k. — FF

NP LS U AP, dm 0 )\ A ¥
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Adding (4.16) and (4.17) together, it follows that

(" — )T PTLP(W" — ") + (\F — xk)T(i Aj(x —25))
j=2

(332—:132\ (BAQTAQ 0 0 \T(:US—{&S\
B L BAY Ay oo BAL A, 0 L

N A N P ML 1 B AP

(oh—a5\ (28434 - pATAn AT [ ok-35 )

o | | | | |

2 gk _zk BAT Ay - 28AT A, AT || &k — &

S A A

Use the notation of the matrices DD and ( to the right-hand side of the last equality, we
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obtain
(0" = ") PILPW" — %) + (A = M) (O Aj(af — 27))
j=2
1, v -ku2 L A
= 5“’0 —v HD"‘§HU — " [
Substituting the last equality in (4.15), this theorem is proved. [l

It follows from (4.14) that

. 1 -
(L"P@* —v"), P = 7%)) = S |lv* = 5"[[{p+c). (4.18)
Based on (4.18), in order to minimize || L1 P(v — v*)||?, we need only to let
L"P@* ™ — o) = LT P(v* —v*) — aP(W* — &%) (4.19)

and by selecting a suitable step-size .
Pv*tt = Pv* —aL 7T P(W" — ).

By setting
H=P'LL'P, (4.20)
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v — v*||&, and L™ P(%* — v") is a descent direction of %||v — v*||% atthe

current point v* whenever 3% # v".

4.2 The contractive property

In this subsection, we mainly prove that the sequence generated by the proposed ADMM
with Gaussian back substitution is contractive with respect to the set 1V*. Note that we
follow the definition of contractive type methods. With this contractive property, the
convergence of the proposed ADMM with Gaussian back substitution can be easily derived
with subroutine analysis.

Theorem 4.2 Let " = (ilf, 5:12“, - ,iﬁ%, S\k) be generated by the ADMM step (3.4a)
from the given vector Pv® = P(xk,... x%  A¥). Let the matrix G be given by (4.20).
For the new iterate v* 1! produced by the Gaussian back substitution (3.5), there exists a
constant co > 0 such that

[ = ol < 0" = "I = eo (0" = 881D + 0* = 55)1%), Vo eV,

(4.21)
where H, D and GG are defined in (4.20), (3.2) and (3.8), respectively.
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Proof By using (3.5) and H = PT LL™ P, we obtain

lv" —v" 5 — " = v
= [[P" =0 )[{zrry = IP@"T = 0")[[¢L 1)
= [[P@" —o")[[{rrry = 1P —v") —aLl™" P(v" = &)1
= 2a(" —v)TPTLPW" — ") — 0" — 5" ||%. (4.22)

Substituting the result of Theorem 4.1 into the right-hand side of the last equation, we get

| [ e
> a(|]v* = a"|p + v = 8%|&) - o®llv" =3I

= a(l—a)|lv" =D + alv” — "||&,
and thus
[0 — o5 < 0" =%

—a((1—a)|v" = 3"||5 + [0 —°E), VYo" e V. (4.29)

Set co = a(1 — ). Recall that @ € [0.5, 1). Thus the assertion is proved.
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Corollary 4.1 The assertion of Theorem 4.2 also holds if the Gaussian back substitution

update form is (3.6) with the calculated step length by (3.7) .
Proof Analogous to the proof of Theorem 4.2, we have that
k+1 * (12

— v ||g

> 2y (V" — v )T PTLP(W" — %) — (vap)? 0" — 0% |5, (4.24)

k * 12
[v" = v7|lg = lv

where o/, is given by (3.7). According to (3.7), we have that

1

ko ~kj2 ko ~kj2 ko ~kj2
ai([v" = 3"lp) = 5 (Ilv" = "Ib +[lv" = "[l5)-
Then, it follows from the above equality and (4.14) that

lo" = o™ ||E = [0"T = o™ ||k

> yag(|o" = 0"|D + [[v" = 3°(1&) — 377k ([l0" = "D + [lv" — 3°([&)

* k ~k 2 k ~k |2
= 1y@—pai (ot — 1% + oF - 7 |2).

Because aj, > % it follows from the last inequality that
| 7 e T

— @2 =) (" =3B + |v* = &), YT € V*. (4.25)
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Since v € (O, 2), the assertion of this corollary follows from (4.25) directly. U

4.3 Convergence

The proposed lemmas and theorems are adequate to establish the global convergence of
the proposed ADMM with Gaussian back substitution, and the analytic framework is quite

typical in the context of contractive type methods.

Theorem 4.3 Let {v"} and {{"} be the sequences generated by the proposed ADMM
with Gaussian back substitution. Then we have

1. limg oo ||Ai(z® —EF)| =0,i =2,...,m, andlims_ o ||[N* — X*|| = 0.
2. Ifeach A; is full column rank matrix, then
(a) any cluster point of {10"} is a solution point of (2.3).

(b) The sequence {T"} converges to some v>° € V*.

Proof. From (4.21) we get

>rzocollv” =" < [l =05
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and thus we get limy_, o |[v* — ©*||3, = 0, and consequently

lim ||A;(z" — )| =0, i=2,...,m, (4.26)
k— o0
and
lim ||A* = A*|| =o0. (4.27)
k— o0

The first assertion is proved.

Now, we assume that each A; is full column rank matrix. Substituting (4.26) into (4.5), for
1=1,2,...,m, we have

iy e X, lim {05 (x:) - 0:(25) + (s — )T (AT XN} >0, Va; € A
—00

(4.28)
It follows from (3.4a) and (4.27) that
. _~]? . _
klin;o(zl A;Z5 —b) = 0. (4.29)
J:

Combining (4.28) and (4.29) we get

w" € Q, lim {0(z) — 0(Z") + (w — ") F(@")} >0, VweQ, (4.30)

k— oo
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and thus any cluster point of {%0" } is a solution point of (2.3). The part (a) of the second
assertion is proved.

It follows from the full column rank assumption, the matrix D and H are positive definite.
Since limy o0 ||0¥ — (|3, = 0, then {7*} is bounded. Let v™ be a cluster point of
{9"*} and the subsequence {7"7 } converges to v>°. It follows from (4.30)
" e Q, lim {0(z) — 0(2") + (w— @) F(w")} >0, Ywe Q @31
— 00

and consequently

y

(97,(372)—(9(113;)0)—'—(332—xfo)T{—A?Aw} >0, V; € X, 1=1,...,m,

<
\ Z;n:1 AJCU;)O —b=0.
(4.32)
This means that v™° € V*. Since |[v* Tt — v*||3; < [[v* — v*||3; and
limp 00 |07 — 07| = 0, the sequence {#*} cannot have other cluster point and {3"}

converges to v°° € V*. N

If we take @ = 1 in the correction form (3.5), similarly as in the last lecture, the resulting

method is convergent in the ergodic sense with the convergence rate O(1/t).
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