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The context of this lecture is based on the publication [11]
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1 Convex optimization problem with m-blocks
We consider the linearly constrained convex optimization with 1 separable operators

min{i Gz(xz) ‘ iAzxz =b, x; € XZ} (1.1)
1=1 1=1

lts Lagrange function is

L(a:l,...,a:m,)\) :Z&(a:z)—)\T(ZAla:z—b), (1.2)
1=1 =1

which is defined on
Q::Xlxng---mexéRl.

Let (mf, s ) )\*) be a saddle point of the Lagrange function (1.2). Then we have
L)\Eé]%l(xiaaj;f” 733:17)\> S L(LET,CU;, 7x;kn7)\*>
< L:I:,L-EX,L' (i:1,...,m)(x17x27'"7337717)‘*)'

It is evident that finding a saddle point of L(x1, x2, . .., Tm, A) is equivalent to finding
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O (Tim) — Om (Th) + (Tm — ) {—ALN} > 0,
A=X)" (X, Ay —b) >0,

\

forallw = (x1,x2, - ,Tm, ) € £2. More compactly, (1.3) can be written into the
following VI:

w* e, 0x)—0z")+ (w—w)"Fw*)>0, VweQ, (1.4a)
where
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(o) [ -afx )
T2 — AT
w = : and  F(w) = : : (1.4b)
Tm — AL\
\ A \ T A b

Note that the operator F(w) defined in (1.4Db) is an affine operator of and its matrix is

skew-symmetric, thus, we have
~\T ~ L ~
(w—w)" (F(w) — F(w)) =0, Yw,uw. (1.5)
Since we have assumed that the solution set of (1.1) is not empty, the solution set of (1.4),
denoted by £2*, is also nonempty.

In addition to the notation of w = (331, o, ,Tm, )\), we also use the following
notation:
v= (X2, ", Tm, A).

Moreover, we define

Vo ={(x5,..., 20, \T) [ (21,25, ..., 25, A7) € Q" }.
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The augmented Lagrangian function of the problem (1.1) is

Co(@ise . miA) = L(@1, . 2 A) + gnzglAixi b2 (e

Now, we are in the stage to describe the direct extension of ADMM to the problem (1.1).

Direct Extension of ADMM ' Start with given (x5, ..., 2%, \F),

(

x’f“ — argmin{ﬁg(azl,xlg,xlg,...,xﬁl,)\k’) | T1 € Xl};
:El;—l_l = argmin{ﬁﬁ(aj‘]f—i_l,aj‘g,xg, “ o ,a:’fn,)\k) ’ T2 € XQ};
 aftl = argmin{ﬁg(a:’fﬂ,...,xffll,xi,xﬁl,...,xfn,)\k) | T € Xi};
xﬁjl = argmln{£5($1f+l, « o ,mlfrj__ll,xm,)\k) ’ ITm € Xm}?
A= AP - B(3, At —b).

(1.7)

There is counter example [3], it is not necessary convergent for the problem with m > 3.
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2 ADMM + Prox-Parallel Splitting ALM

The following splitting method does not need correction. Its k-th iteration begins

with given v* = (x5, ..., 2% | \¥), and obtain v* 1! via the following
procedure:
([ k+1 -

ot = argmm{ﬁg(:vl,xlg,x’g, LD L) ! xr1 € Xl};

for 1=2,...,m, do:

k+1 .k k k k \k
r; = arg min 5 A :
e +o [[Ai(zi — 27) ||
k+1 _ \k m k+1

(2.1)
e The x5 ... x,,,-subproblems are solved in a parallel manner.

e To ensure the convergence, in the z;-subproblem,? = 2, ..., m, an

I

extra proximal term % | A;(xz; — 2¥)]|? is necessary.
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An equivalent recursion of (2.1) ' =7+ 1andTis given in (2.1).

)
phtl = argmin{ﬁg(xl,xg,xlg,... ok AF) ’ r1 € X}

Mota = \F — B(Ayah ™ + 30, Ak — b);
for 1=2,...,m, do:
92<33@) — ()\k_'_%)TAzZCZ

k41
i 3 kN (12
+ 57| As (s — 27) |

.~ = argmin r; € X p i

N (ST Ak )

\
The method (2.2) is proposed in IMA Numerical Analysis [11]:

e B. He, M. Tao and X. Yuan, A splitting method for separable convex
programming. IMA J. Numerical Analysis, 31(2015), 394-426.
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Equivalence of (2.1) and (2.2)

It needs only to check the optimization conditions of their x;-subproblems for
1 = 2, ..., m. Note that the optimal condition of the x;-subproblem of (2.1) is

it e &y, 0i(z) — 0; (2T + (m — 2f THT = AT ARy
+BA?[(A1xk+1+Z] 5 Aj x —b) + A (xF — )]
+7BATA; (xf 1= 2k)} > 0.
forall x; € X;. By using
NeFe = \F - (AT + S Ajak — b); (2.3)
it can be written as

€ X i) = @) 4 (o - kT AT N

1

+BATA; (21— ak) + 7BATA; (zi = 2F)} > 0.

1
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and consequently

Ry 0(0) — B 4 (- T ATAC

+(1+7)BATA; (zf = 2)} >0, Va, € X (24)
Setting © = 1 4 7, (2.4) is the optimal condition of the x;-subproblem of (2.2) !

Notice that the subproblems in (2.2) are
i = argmin{0) (z1) + 2| Ay + (O, Al —b) — IAF |2y € A}
and

ot = argmin{f(w) + 42| Ai(w — 2f) = HNTE | € A,

1

fore = 2,...,m. We assume that the above problems are not difficult to solve.

The convergence analysis is under the assumption ;4 > m — 1. In the next
section, Section 3, we prove the convergence of Algorithm (2.2). In Section 4,

we present a prediction-correction method which uses the output of (2.2) as the

predictor, and the new iterate is updated by a simple correction.
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3 Convergence Analysis for the algorithm (2.2)

We use (2.2) to analyze the convergence and assume that g > m — 1.

The optimal condition of the x;-subproblems of (2.2) can be written as

(
01(21) — 01 (2 T) + (21 — 2f )T (—ATMH2) > 0, Vay € Ay
0i(x:) — O;(wf ™) + (w; — 2T T (—AT A F2)

1

N\

> (x; — 2P YT uBAT Ay (xF — 2t Vo, € Xy i =2,...,m.
(3.1)
Aot = \F— p(Agah 4 ZA % — b)
and

ARFL = Ak 5(2 Azt —p)

we have

ARte = kL g Z Aj(zh — CE?—H). (3.2)

j=2



Substituting (3.2) in (3.1), we get

Oy (21) — 00 (@) + (g — BT (AT AR 4 ATpy)
>0, Va1 € Ay
8 Oi(xy) — 0; () + (zy — 2P THT (= AT NFHL - ATpy) (3.3)
> (z; — 2P YT uBAT Ay (xF — 28 Vo, € &
\ 1=2,...,Mm.
where .
pr =0 Z Aj(x;‘f — x"f“). (3.4)
j=2
Since

XIX - 11



It can be written as

(A —

)\k—|—1 Z A xk—i—l

forall A € R

Combining (3.3) and (3.5)

/

01 (x1) — 01(27) + (21 — 2y THT (= ATARTY + ATpy)
>0, V1 € A7,
Oi(wi) = 0i (i) + (w; — a7 T T (AT N 1 ATpy)
> (5 — 2y )T up AT A (2}
1=2,...,m
(A= AT () A —b)
> (A — AFHDT(1/8) (A — A1), v € R

k“) Va; € X;;

> (A= ATHTA/B) (A = AT, 35)

(3.6)
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By using the notations 6(x) and F'(w), it follows from (3.6) that

O(x) = (") + (w — w* )T F (™) + pf(z Ai(a; —x7™h)

v )T BAT Ai(ay — i)

Ms

>
z:2

+(A = XTHT/B) (N =AY vw e Q.

Setting w = w™ in the above inequality and by a manipulation, we get

Z k—l—l ﬁATA (CL’ . lek—l—l) ()\k—l—l . )\*)T%()\k . )\k—l—l)
1=2
> (") = 0(z*) + (T — w*) TP (wh )
+ o (D Al ™ —a) 3.7)
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Now, we treat the right hand side of (3.7). Using (1.5) and the optimality, we have

Q(xk—H) . 9(:13*) + (wk—l—l . w*)TF(wk—l—l)

= (") - 0(z*) + (W —w*)T F(w*) > 0.

Because > ..o, A;xi=0b and Y., Ajit! —b= %()\k — Nkt
using the definition of px (see (3.4)), we get
P (3 At~ a%)) = (F - NS 4ok b,
i=1 j=2

Substituting it in (3.7), we get

& 1

2@ =) uBAT Al — i) £ (T = XD)TZ (8 - AT

=2

> (AP = AT A (2 — 2k, (3.8)
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By denoting

[ 25 (1A 42 )

v = k and G = K (3.9)

LV \ Yy

we get the following assertion:

Lemma 3.1 Letv* 11! pe generated by (2.2) from the given vector V¥, then we
have

(’Uk L ’U*)TG(’Uk . ,Uk—i—l) > gO(’Uk v

— Y

) (3.10)

where



Proof. Using the notations (3.9), the inequality (3.8) can be written as

(vk—i—l - ’U*)TG(Uk o vk—l—l) )\k—I—l T ZA k—|—1)

Adding (v* — v*T1H)TG(v* — v*T1) to the both sides of the above inequality,
we get the assertion directly. O]

Now we consider the profit of the k-th iteration. Using (3.10) and (3.11), we have

e R o 2
= [* =g = 0" —v") = (" ="

= 20" = v)TG(" — o) — o —

> of — R THIE 2008 = MTHTY S A (2 - 25t 3a2)
j=2

In the following is to show that, when 11 > m — 1, there is a constant o > 0,
such that the right hand side of (3.12) is greater than o ||vF — v 12,
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According to the definition of the matrix (G, we have

”U _vk+1H +2() )\k+1 ZA ! —a:k+1 )
(\/BAQ( _xl§+1)\T ( ul, 0 -~ 0 I, \
\/BA:s( — a5t 0 wlh o
= . Z 0 I
VBAm (g, — xt) 0 -+ 0 uh I
\VBN =)\ 1)

[ VBAx(zh — a5t)
VBAs(zk — 5t
: (3.13)
\/EAm@Ifn — xlfn+1)
\(1/vB)(\F — AF+1)
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Notice that the block-wise matrix

(ul; 0 - 0 )
o an i
S .0
0 -~ 0 ul I,

\ L - L L I}

in (3.13) have the same largest (resp. smallest) eigenvalues as the m X m

symmetric matrix

M=1 1 -~ - 01 . (3.14)

\1 o011 1)mxm



Lemma 3.2 Form > 2, the m X m symmetric matrix M defined in (3.14) has

(m — 2) multiple eigenvalues
V1:V2:"':Vm—2:/h

and another two eigenvalues

et i = 5 [+ 1) % /Gt D2+ 4((m — 1) — )]

Proof. Let e be a (m — 1)-vector whose each element equals 1. Thus

ply,—1 e
T 1

M =
€

Without loss of generality, we assume that the eigenvectors of M have forms

Y _
z = or z= ., where y € R™ L,

0 1
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In the first case, we have

Hy = vy,
(3.15)
ely = 0.

It is clear that the (1 — 1)-vectors
(1) [0 [0
0
: ; 1
\ -1 \ -1 \ -1

are linear independent and satisfy (3.15) with v = . Thus,




are eigenvectors of M and the related eigenvalue

Vi =Vy =+ =Vmp—9o2 = U.

T71

In the second case, 2z = (

y*, 1), we have

1y + e = vy,
ely+1=ur.
It follows from (3.16) that
(v—p)(v—1)—(m—-1)=0,

and thus
1

Um—1,Vm = 5

The lemma is proved. [l

=-[(p+1) £V (p+1)2+4((m—1) — p)].

(3.16)
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For u > 1, it is easy to verify that

o (u+1>—¢<u+1)22+4<<m—1>—u) 347

is the smallest eigenvalue of M. For fixed 1 > (m — 1), there is a o such that
Um > 0. Together with (3.12) and (3.13), we have the following assetions:

Lemma 3.3 Letu > m — 1, then there is aoc > 0 such that

[oF = 0" 2N =T (S0 As(ak o) > oof 0", @19
1=2

where (G is defined in (3.9).

Theorem 3.1 Letp > m — 1 and {vk} be the sequence generated by (2.2),
then there is a 0 > 0 such that

[o* L — 0|2 < ||v* —v*||E — oot =R, Vot e VE. o (3.19)
where (G is defined in (3.9).

The inequality (3.19) is is the key for convergence of the method (2.1) and (2.2).
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Implementation of the method for three block problems I

For the problem with three separable operators
min{f;(x) + 02(y) +03(2)|Ax+ By+Cz=b, x € X,y Y,z € Z},
we have
LE(z,y,2,N) = 61(2) + 02(y) + 03(z) — X' (Az + By + Cz — b)
‘|‘§HA£C + By + Cz — bl|*.

For given vk = (yk, zk, )\k), by using the method proposed in this subsection,
the new iterate v* 11 = (yFT1, 2F 1 \F+1)is obtained via (7 > 1) :

2

2Pt = Argmin{ L3 (z, y*, 2*, \F) |z € X},

L = Argmin{ L3 (zF 41, y, 28 AF) + 22| B(y — yF)|1? |y € V1,
M = Argmin{ L3 (2" 4%, 2, AF) + B|C(z - 29)|? | 2 € 2},
AL = AP B(AxF T 4+ ByFt 4+ C2FL —b),

\

(3.20)
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An equivalent recursion of (3.20) is

( gkl = Argmin{E%(x,yk,zk, M)z e X,

Aotz = 2\ — B(AzF T + Byk + C2F —b)

 yF T =Argmin{6(y) — (\F+2)TBy + 42 (|B(y — y*)|1? |y € Y},
2L = Argmin{0s(2) — (A T2)TC2 + L2 || O (2 — 29) |12 | 2 € 2},
)\k—l—l — )\k L 5(A33k+1 e Byk—l—l T CZIH—I L b),

\
(3.21)

where . = 7 4+ 1 > 2. Implementation of (3.21) is via

/

Pl = Argmin{6, (z) + gHAm + [By* + CzF — b — %)\k]HQ |z e X},
Aets = \F — B(Axkt! 4+ Byk + C2F —b)

YT =Argmin{62(y) + 4[| By — [ByF + 5 2] |y € V),

2+ = Argmin{0s(2) + L2||Cz — [C2F + u—lﬁ)\’“%]HQ |z € Z},

AL = Ak — B(AZF T + ByFtl + C2FH — ).




4 Method with the calculated stepsize

The iteration of the method (2.1) and/or (2.2) begin with v* = (25,--- . A\*) and
finish with v*+1 = (25T ... gk+1 A\E+1) in this section, we consider the
method with the calculated step-size. In practice, we use the output of (2.2) as a
predictor.

)
:c’f“ = argmin{ﬁg(:vl,x’g,x’g,...,xfn,)\k) ’ r1 € Xl};

Mota = \F — B(Aya ™ + 30, Ak — b);
for 1=2,...,m, do:
QZ(CIJZ) — ()\k+%)TAZxZ

~k .
7 = argmin T, € X;
+20|Ai(ws — 2|

)

AP = \F — B(Agzh Tt 437" A3k —b)

\

k+1

m

We only denote the output v*+1 = (25Tt ... gk+1 A\k+1) generated from

(2.2) by using the new notations 0% = (53’5, fe ,:E’fn, 5\’“) After getting 0%, we
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k+1 k k ~k)_

offer thenew iterate v* 1 by v Tl =0k —ay (V¥ — o

Algorithm 2: a prediction-correction splitting method for solving (1.1)

Step 1. Prediction step. From the given v* = (z5,--- , 2% ~\*) using (4.1) to
produce the predictor 0% = (&5,--- | &k \F).
Step 2. Correction step. The new iterate v*t1 = (z5T1 ... gkt A\*F+1) i
updated via:
P = oF — ag (Vv — ), (4.2)
where
k ~k
o(v*, v
A = ’}/CYZ, Ve € (072)7 O‘Z — H'Uk( _7ﬁk||)2 (4.3)
G
and
PV, 0F) = [P = 3F |G + (A = AT (L, Ai(af — 2)). (49)

As we can see easily, Algorithm 1 (2.2) turns out to be a special case of Algorithm



2 where 7y, = l/oq\C in (4.3). Thus, in the following, we prove the convergence for
Algorithm 2, from which the convergence of Algorithm 1 becomes trivial.

Since the 0% in (4.1) is the same of vF 1 in Algorithm (2.2), similarly as in

Lemma 3.1, we have the following assertion directly.

Lemma 4.1 Let 0" be generated by (4.1) from the given vector V", then we have
(v* — )T G(" — %) > p(vF, %), (4.5)

where (V" , O%) is defined in (4.4).

Lemma 4.2 Under the assumption . > m — 1, it holds that

1+o

k~k>

[v* — "2 (4.6)

Proof. According to the definition of (v, T%) (see (4.4)) and the inequality
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(3.18) in Lemma 3.3, we have

m

20(0%, %) = 2v* = TG + 200" = AT (D As(a) — 7))

1=2

~

> (1+0)" = 3",

and the assertion follows from the definitions of go(’uk, 27"“) and o, (see (4.3) and
(3.11)) directly. O

For determinate the step size o in (4.2), we define the step-size dependent new
iterate by

VP Ha) = vF — a(v® — o), (4.7)
In this way,
I(a) = [[o* —v*||g — 0" (@) — v*[I (4.8)
is the distance decrease functions in the k-th iteration by using updating form

(4.7). By defining

q(a) = 2ap(v", %) — o?||v® — F|Z,. (4.9)
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It follows from (4.7), (4.8) and (4.5) that

0" = v*||E = v* — v* — a(v® — )|
204(2)]‘C — ’U*)TG(’UI~€ — @k) — 042Hv]‘C — ~k||%;
2ap(v*, %) — a?||v* — "3,

q(a). (4.10)

()

'V

Note that ¢(«) is a quadratic function of c, it reaches its maximum at

k ik
. p(v”, 0%)
— 4.11

and this is just the same as defined in (4.3). Usually, in practical computation,

taking a relaxed factor v > 1 is useful for fast convergence.

Theorem 4.1 Let {v"} be the sequence generated by Algorithm 2. We have

(2 =)

; [o* —o%||%, Vo* € V*. (4.12)

| P et P
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Proof. It follows from (4.8) and (4.10) that
[P —o*||2 < ||[v* — v ||E — q(yal), Yo € V. (4.13)
By using (4.9) and (4.11) we obtain

g(va) = 2yagp(v”,0") — (vap)?v® — oF|I%
= (2 — )i, ). (4.14)

Since (see (4.6))

1
p(0F,5) > 0" — 5%

and consequently (see (4.3)),

. 1

Thus, we have

- 1 -
app(eh,7*) > 7o — .

Substituting it in (4.14), the proof of this theorem is complete. [

Theorem 4.1 offers the key inequality for the convergence !
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