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min{θ(x) | x ∈ Ω} (1.1)'
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�`5^�: ¤k��1��ÑØ2´eü��

�±�¤ x∗ ∈ Ω, (x− x∗)T∇θ(x∗) ≥ 0, ∀x ∈ Ω

ò∇θ(x)�¤ F (x),Ò´

x∗ ∈ Ω, (x− x∗)TF (x∗) ≥ 0, ∀x ∈ Ω

þªÒ´C©Ø�ª�IO/ª.

I�`²�´,XJ∇θ(x)��,∇2θ(x)�½é¡.
é��C©Ø

�ª,�þ¼ê F (x)=¦��, F (x)� JacobianÝ
Ø�½é¡.

C©Ø�ª — \f÷ì�êÆL�/ª.
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ÊÏ��ÆêÆ — Äu�È©Æ���Ún

min{θ(x)|x ∈ X}, x∗ ∈ X , θ(x)− θ(x∗) ≥ 0, ∀x ∈ X ;

min{f(x)|x ∈ X}, x∗ ∈ X , (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X .

þ¡�à`z�`5^�´��Ä��,Ü3�åÒ´e¡�Ún:

Lemma 1 LetX ⊂ <n be a closed convex set, θ(x) and f(x) be convex func-

tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ = arg min{θ(x) + f(x) |x ∈ X} (1.2a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (1.2b)
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�Ä�5�å�à`z¯K

min{θ(x) | Ax = b, x ∈ X}, (1.3)

Ù¥ θ(x)´à¼ê,A ∈ <m×n, b ∈
<m, X ⊂ <n �à8. Ù Lagrange
¼ê´½Â3 X × <mþ�

L(x, λ) = θ(x)− λT (Ax− b). −6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5

Saddle point

XJ�é (x∗, λ∗)÷v

Lλ∈<m(x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ∗).

Ò¡� Lagrange¼ê3 X × <mþ�Q:"§��d¿ÂÒ´




x∗ = arg min{L(x, λ∗) |x ∈ X},
λ∗ = arg max{L(x∗, λ) |λ ∈ Λ}.
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|^c¡�Ún,Òk




x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T (−ATλ∗) ≥ 0, ∀x ∈ X ,
λ∗ ∈ Λ, (λ− λ∗)T (Ax∗ − b) ≥ 0, ∀ λ ∈ Λ.

§�±��¤�«;��/ª:

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω,

Ù¥

w =


 x

λ


 , F (w) =


 −ATλ

Ax− b


 and Ω = X × <m.

5¿�Ù¥��f F ´üN�.¤¢üN´�

(u−v)T (F (u)−F (v)) ≥ 0. ùpTk (u− v)T (F (u)− F (v)) = 0.
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éü��f��©l�5(�.�åà`z¯K

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}, (1.4)

ÏLaq�©Û,�`5^�Ó��±L«¤��C©Ø�ª:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω,

Ù¥

u =


 x

y


 , w =




x

y

λ


 , F (w) =




−ATλ
−BTλ

Ax+By − b


 ,

θ(u) = θ1(x) + θ2(y) and Ω = X × Y × <m.
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nnn������©©©lll���fff���555���åååààà`̀̀zzz¯̄̄KKK ��� ���ddd���CCC©©©ØØØ���ªªª

min{θ1(x)+θ2(y)+θ3(z) | Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z},

ÏLaq�©Û,�`5^�Ó��±L«¤��C©Ø�ª:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω,

Ù¥

u =




x

y

z


 , w =




x

y

z

λ



, F (w) =




−ATλ
−BTλ
−CTλ

Ax+By + Cz − b



,

Ú

θ(u) = θ1(x) + θ2(y) + θ3(z) and Ω = X × Y × Z × <m.
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·�'% ADMM,��l�E�Æ��Ï�
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Ø�ª, 20cc��·��¯k'. �Ï�ä©Û¥Ø�¯KÑ^

C©Ø�ª�£ã. ·� ADMMïÄ,´l 1997c 4�m©�.

� f(x), g(y)´üN�f.(�.üNC©Ø�ª´�

u∗ ∈ Ω, (u− u∗)TF (u∗) ≥ 0, ∀ u ∈ Ω,

Ù¥

u =


 x

y


 , F (u) =


 f(x)

g(y)


 ,

Ω = {(x, y)|x ∈ X , y ∈ Y, Ax+By = b}.
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Some convergence properties of a method of multipliers for
linearly constrained monotone variational inequalities

Bingsheng Hea, Hai Yangb; ∗
aDepartment of Mathematics, Nanjing University, Nanjing, 210093, People’s Republic of China

bDepartment of Civil Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong,
People’s Republic of China

Received 1 June 1997; received in revised form 1 July 1998

Abstract

Variational inequalities have important applications in mathematical programming. The alternative direction methods
are suitable and often used in the literature in solving large-scale, linearly constrained variational inequalities arising in
transportation research. In this paper, we present a few inequalities associated with the alternative direction method of
multipliers given by Gabay and Mercier. The inequalities are helpful in understanding the algorithm. c© 1998 Elsevier
Science B.V. All rights reserved.

Keywords: Monotone variational inequality; Decomposition; Method of multipliers; Convergence properties

1. Introduction

Many equilibrium problems arising in network economics [1], transportation research [2] and regional
science [3] can be described uniformly by variational inequalities. Much e�ort has been focused on developing
decomposition methods for solving large and real VI problems. In the decomposition methods, the original
large problem will be solved advantageously by solving a series of low-dimensional subproblems. The aim of
this paper is to extend the framework of one of the decomposition methods (the method of multipliers [4])
and study its convergence properties.
The mathematical form of VI consists in �nding a vector u∗ ∈ � such that

(u− u∗)TF(u∗)¿0; ∀u ∈ �; (1)

where � is a nonempty, closed convex subset of Rl, and F is a continuous mapping from Rl to itself. In
practice, many VI problems have the following separable structure, namely (e.g. [1–3,5]),

u=
(
x
y

)
; F(u) =

(
f(x)
g(y)

)
; (2)

∗ Corresponding author.

0167-6377/98/$ – see front matter c© 1998 Elsevier Science B.V. All rights reserved.
PII: S0167 -6377(98)00044 -3

·� ADMM�1��©Ù
97cÝv 98cuL
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¦)�©l(�C©Ø�ª� ADMM�{

Step 1.l�½� (yk, λk)Ñu,¦� xk+1 ∈ X ,¦�

(x′ − xk+1)T
(
f(xk+1)−AT [λk − β(Axk+1 +Byk − b)]

)
≥ 0, ∀x′ ∈ X .

Step 2.d®k� (xk+1, λk),¦� yk+1 ∈ Y ,¦�

(y′ − yk+1)T
(
g(yk+1)−BT [λk − β(Axk+1 +Byk+1 − b)]

)
≥ 0, ∀ y′ ∈ Y.

Step 3.�� Lagrange¦f λ

λk+1 = λk − β(Axk+1 +Byk+1 − b).

î­K�Âñ�Ý�´ëê β�À�
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JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 106, No. 2, pp. 337–356, AUGUST 2000

Alternating Direction Method with
Self-Adaptive Penalty Parameters for
Monotone Variational Inequalities1

B. S. HE,2 H. YANG,3 AND S. L. WANG
4

Communicated by R. Glowinski

Abstract. The alternating direction method is one of the attractive

approaches for solving linearly constrained separate monotone vari-

ational inequalities. Experience on applications has shown that the

number of iterations depends significantly on the penalty parameter for

the system of linear constraint equations. While the penalty parameter

is a constant in the original method, in this paper we present a modified

alternating direction method that adjusts the penalty parameter per iter-

ation based on the iterate message. Preliminary numerical tests show

that the self-adaptive adjustment technique is effective in practice.

Key Words. Monotone variational inequalities, alternating direction

method, variable penalty parameters.

1. Introduction

Variational inequality problem consists of finding a vector u*∈Ω such

that

(VI(Ω, F )) (uAu*)TF (u*)¤0, ∀u∈Ω, (1)

where Ω is a nonempty closed convex subset of R
l and F is a continuous map-

ping from R
l to itself. In practice, many VI problems have the following

1This first author was supported by NSFC Grant 19971040. The second author was supported

in part by UGC Grant RI94�95 EG01.
2Professor, State Key Lab. for Novel Software Technology, Department of Mathematics, Nanj-

ing University, Nanjing, China.
3Associate Professor, Department of Civil Engineering, Hong Kong University of Science and

Technology, Clear Water Bay, Kowloon, Hong Kong, China.
4PhD Student, Department of Mathematics, Nanjing University, Nanjing, China.

337

0022-3239�00�0800-0337$18.00�0 © 2000 Plenum Publishing Corporation
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��ex(w)��[��eλ (w)��, we should increase β in the next iteration; conversely, we

decrease β when ��ex(w)��Z��eλ (w)��. This is the basic idea in our modified

alternating direction method. In detail, we consider the following different

techniques for adjusting βk .

Given μ∈(0, 1) and a nonnegative sequence {τk} that satisfies

∑
S

kG0

τkFS, (14)

we consider three strategies below.

Strategy S1. {βk} is monotonically increasing,

βkC1G�βk(1Cτk ),
βk ,

if ��xkAPX [xkA( f (xk)AATλk)]��Fμ��AxkCBykAb��,
otherwise.

Strategy S2. {βk} is monotonically decreasing,

βkC1G�βk�(1Cτk),

βk ,

if μ��xkAPX [xkA( f (xk)AATλk)]��H��AxkCBykAb��,
otherwise.

Strategy S3. {βk} is a self-adaptive variable,

βkC1G�
βk(1Cτk),

βk�(1Cτk),

βk,

if ��xkAPX [xkA( f (xk)AATλk)]��Fμ��AxkCBykAb��,
if μ��xkAPX [xkA( f (xk)AATλk )]��H��AxkCBykAb��,
otherwise.

In any cases, if βkC1≠βk , then

βkC1G(1Cτk )βk or βkC1Gβk�(1Cτk ).

Under condition (14), we have

∏
S

iG1

(1Cτ i )FCS.

Hence, the sequence {βk} is both upper bounded and bounded below away

from zero; that is, we have

BL_ inf
k

{βk}H0, BU_sup
k

{βk}FCS. (15)

3. Main Theorem

The task of this section is to establish a theorem that ensures the con-

vergence of the proposed method with the different strategies for adjusting

• �O��{�Âñ�Ý§î­�6 β�ÀJ.

• ·�Ø^�½�vëê β,
´æ^vëêS� {βk}.
• ùp�vëêS� {βk}�gN'OK,

AT�´·�@Ïé ADMM�{�­��¢�5�z"

• ¯K�´�k��Ü©)û� �Ï3=p? �¡2J.
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Abstract. The alternating directions method (ADM) is an effective method for solving a class of variational
inequalities (VI) when the proximal and penalty parameters in sub-VI problems are properly selected. In this
paper, we propose a new ADM method which needs to solve two strongly monotone sub-VI problems in each
iteration approximately and allows the parameters to vary from iteration to iteration. The convergence of the
proposed ADM method is proved under quite mild assumptions and flexible parameter conditions.

Key words. variational inequality – alternating directions method – inexact method

1. Introduction

A variational inequality problem is to find a vector u∗ ∈ � such that

(u − u∗)T F(u∗) ≥ 0, ∀u ∈ �, (1.1)

where � is a nonempty closed convex subset of Rn , and F is a mapping fromRn into
itself. In this paper, we consider the VI problem with the following structure:

u =
(

x
y

)
, F(u) =

(
f(x)

g(y)

)
, (1.2)

� = {(x, y)|x ∈ X , y ∈ Y, Ax + By = b}, (1.3)

where X and Y are given nonempty closed convex subsets ofRn andRm , respectively,
A ∈ Rl×n and B ∈ Rl×m are given matrices, b ∈ Rl is a given vector, f : X → Rn and
g : Y → Rm are given monotone operators. Problem (1.2)–(1.3) is a special case of the
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• lN' β
2 ‖Ax+By − b‖2¥ β�N' 1

2‖Ax+By − b‖2H ¥H .

• \�C:�,|^��Ø°(OK,¦�f¯K#NØ°(¦).

• Ø°(OKéJö��,I�/Ï��'uØ�ª�Ún,|^

þãÚn,��Ø����þ.�Oª"

• ·���´�5zÚýÿ��. ÃG7LU"v¿�U,��·

�¿ã�´3uL3 JCM 2006�©Ù¥¢y�"�Ø© [14].
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ADMM¦)ü��©l�f��5�åà`z¯K

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y} (2.1)

¯K (2.1)�O2 Lagrange¼ê´

Lβ(x, y, λ) = θ1(x)+θ2(y)−λT (Ax+By−b)+β

2
‖Ax+By−b‖2. (2.2)

Ù¥ β > 0´~ê. The convergence time seriously depend on β !

���OOO������{{{ Alternating Direction Method of Multipliers (ADMM)

�O��{ ADMM� kgS�´(l�½� (yk, λk)m©




xk+1 = Argmin{Lβ(x, yk, λk) |x ∈ X},

yk+1 = Argmin{Lβ(xk+1, y, λk) | y ∈ Y},

λk+1 = λk − β(Axk+1 +Byk+1 − b).

(2.3)
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�m5Ò´




xk+1 = Argmin{θ1(x)− xTATλk + β
2 ‖Ax+Byk − b‖2 |x ∈ X},

yk+1 = Argmin{θ2(y)− yTBTλk + β
2 ‖Axk+1 +By − b‖2 | y ∈ Y},

λk+1 = λk − β(Axk+1 +Byk+1 − b).

|^ xÚ y-f¯K��`5^�,��uC©Ø�ª

xk+1 ∈ X , θ1(x)− θ1(xk+1)+

+(x− xk+1)T
(
−ATλk − βAT (Axk+1 +Byk − b)

)
≥ 0, ∀x ∈ X .

yk+1 ∈ Y, θ2(y)− θ2(yk+1)+

+(y − yk+1)T
(
−BTλk − βBT (Axk+1 +Byk+1 − b)

)
≥ 0, ∀ y ∈ Y.

λk+1 = λk − β(Axk+1 +Byk+1 − b).
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criterion might be ǫrel = 10−3 or 10−4, depending on the application.

The choice of absolute stopping criterion depends on the scale of the

typical variable values.

3.4 Extensions and Variations

Many variations on the classic ADMM algorithm have been explored in

the literature. Here we briefly survey some of these variants, organized

into groups of related ideas. Some of these methods can give superior

convergence in practice compared to the standard ADMM presented

above. Most of the extensions have been rigorously analyzed, so the

convergence results described above are still valid (in some cases, under

some additional conditions).

3.4.1 Varying Penalty Parameter

A standard extension is to use possibly different penalty parameters ρk

for each iteration, with the goal of improving the convergence in prac-

tice, as well as making performance less dependent on the initial choice

of the penalty parameter. In the context of the method of multipliers,

this approach is analyzed in [142], where it is shown that superlinear

convergence may be achieved if ρk → ∞. Though it can be difficult to

prove the convergence of ADMM when ρ varies by iteration, the fixed-

ρ theory still applies if one just assumes that ρ becomes fixed after a

finite number of iterations.

A simple scheme that often works well is (see, e.g., [96, 169]):

ρk+1 :=





τ incrρk if ‖rk‖2 > µ‖sk‖2
ρk/τdecr if ‖sk‖2 > µ‖rk‖2
ρk otherwise,

(3.13)

where µ > 1, τ incr > 1, and τdecr > 1 are parameters. Typical choices

might be µ = 10 and τ incr = τdecr = 2. The idea behind this penalty

parameter update is to try to keep the primal and dual residual norms

within a factor of µ of one another as they both converge to zero.

The ADMM update equations suggest that large values of ρ place a

large penalty on violations of primal feasibility and so tend to produceBoyd�ù�Ø©�Ü©ë�©z:
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Abstract

SnapVX is a high-performance solver for convex optimization problems defined on
networks. For problems of this form, SnapVX provides a fast and scalable solution with
guaranteed global convergence. It combines the capabilities of two open source software
packages: Snap.py and CVXPY. Snap.py is a large scale graph processing library, and
CVXPY provides a general modeling framework for small-scale subproblems. SnapVX
offers a customizable yet easy-to-use Python interface with “out-of-the-box” functionality.
Based on the Alternating Direction Method of Multipliers (ADMM), it is able to efficiently
store, analyze, parallelize, and solve large optimization problems from a variety of different
applications. Documentation, examples, and more can be found on the SnapVX website
at http://snap.stanford.edu/snapvx.

Keywords: convex optimization, network analytics, graphs, data mining, ADMM

1. Introduction

Convex optimization is a widely used approach of modeling and solving problems in many
different fields, as it offers well-established methods for finding globally optimal solutions.
Numerous general-purpose optimization software packages exist (Sturm, 1999; Byrd et al.,
2006; Mosek, 2010; Diamond and Boyd, 2016), but they typically rely on algorithms that
are difficult to scale, so many modern machine learning problems cannot be solved by
these common, yet general, approaches. Instead, solving large scale examples often requires
developing problem-specific solution methods, which can be very fast but require significant
optimization expertise to build. Furthermore, they are limited in scope, as they must be
fine-tuned to only one particular type of problem and thus are hard to generalize.

In this paper, we build on the observation that many large convex optimization examples
follow a common form in that they can often be split up into a series of subproblems using a
network (graph) structure. Nodes are subproblems, representing anything from timestamps
in a time-series data set to users in a social network. The edges then define the coupling, or
relationships between the different nodes, and the combination of nodes and edges yields the

c©2017 David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosič, Stephen Boyd, and Jure
Leskovec.
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SnapVX: A Network-Based Convex Optimization Solver

updates for the separate subproblems using Python’s multiprocessing library. SnapVX is
built to run on a single machine, parallelizing across multiple cores and allowing “out-of-
the-box” functionality on machines ranging from standard laptops to large-memory servers.

3. Syntax and Supported Features

We now present usage of SnapVX on a simple example. Complete documentation and more
examples are available on the SnapVX website. Consider two nodes with an edge between
them. We solve for a problem where each node has an unknown variable xi ∈ R1. The first
node’s objective is to minimize x21 subject to x1 ≤ 0, the second’s is to minimize |x2 + 3|,
and the edge objective penalizes the square norm difference between the two variables,
‖x1 − x2‖22. The following code specifies the optimization problem and solves it:

from snapvx import ∗
gvx = TGraphVX() #Create a new graph
x1 = Variable(1, name=’x1’) #Create a variable for node 1
gvx.AddNode(1, Objective=square(x1), Constraints=[x1 <= 0]) #Add new node
x2 = Variable(1, name=’x2’) #Repeat for node 2
gvx.AddNode(2, abs(x2 + 3), [])
gvx.AddEdge(1, 2, Objective=square(norm(x1 − x2)), Constraints=[]) #Add edge between nodes
gvx.Solve() #Solve the problem
gvx.PrintSolution() #Print the solution on a node−by−node basis

As SnapVX is meant to be a general-purpose solver, it has many customizable options
to help easily and efficiently solve a wide range of convex optimization problems. These
include ADMM iteration limits, verbose mode (to list intermediate steps at each iteration),
and defining customized convergence thresholds. Two key features are highlighted below:
• Bulk Loading - Often, the objectives and constraints at each node or edge will share

a common form. For example, all the nodes could be trying to minimize ‖x − ai‖2
for different values of ai. Rather than requiring users to manually input each of these
values, SnapVX allows for “bulk loading” of data. The functions AddNodeObjectives and
AddEdgeObjectives allow the user to specify the general form of the objectives and an
external file with separate data, and SnapVX fills in the details. This functionality makes
practical and significantly speeds up the loading of very large data sets.

• ADMM ρ-update - The convergence time of ADMM depends on the value of the
penalty parameter ρ (Nishihara et al., 2015), as it affects the tradeoff between primal
and dual convergence, both of which need to be obtained for the overall problem to be
solved. SnapVX users are not only able to select the value of ρ (it defaults to ρ = 1), but
can also define a function to update ρ after each iteration based on the primal and dual
residual values (He et al., 2000; Fougner and Boyd, 2015).

4. Scalability

One of the biggest benefits of SnapVX is that it allows us to solve large problems very
efficiently. It does so by automatically parallelizing the ADMM updates across multiple
cores of a single machine using Python’s multiprocessing class. Note that SnapVX is meant
to be run on a single machine, rather than in a distributed computing environment. Con-
vergence time depends on the problem complexity, but we empirically observe that it scales

3
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min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}

Ú8I¼ê¦þ���u 0�~ê τ ±�)¤�¯K

min{τ (θ1(x) + θ2(y)) | Ax+By = b, x ∈ X , y ∈ Y} (2.4)

�d.þ¡�¯K�O2 Lagrange¼ê´

Lτ,β(x, y, λ) = τ (θ1(x)+θ2(y))−λT (Ax+By−b)+β
2
‖Ax+By−b‖2.

The convergence time depend on τ and β !

ëê τ �ÀJ,��ur¯K¥8I¼êÚ�å^��þj�NÐ.
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min {θ1(x) + θ2(y) |Ax+By = b, x ∈ X , y ∈ Y} (3.1)
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(xk+1, yk+1)=Argmin
{
θ1(x) + θ2(y) + β

2
‖Ax+By − b‖2

∣∣x ∈ X , y ∈ Y}

¦¦¦)))¯̄̄KKK (3.1)���OOO222 Lagrange¦¦¦fff{{{ l�½� λkm©

(xk+1, yk+1)=Argmin

θ1(x) + θ2(y)− (λk)T (Ax+By − b)

+β
2
‖Ax+By − b‖2

∣∣∣∣∣x ∈ Xy ∈ Y


λk+1 = λk − β(Axk+1 +Byk+1 − b).

f¯KJUÝ����,O2 Lagrange¦f{`uv¼ê�{"

���ÓÓÓ���"""::: vk|^ xÚ y��©l(��¦)¬ÃlXÃ"



32
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l�½� ykm©

xk+1 =Argmin
{
θ1(x) + β

2
‖Ax+Byk − b‖2

∣∣x ∈ X},
yk+1 =Argmin

{
θ2(y) + β

2
‖Axk+1 +By − b‖2

∣∣y ∈ Y}.
¦¦¦)))¯̄̄KKK (3.1)���tttµµµ���OOO222 Lagrange¦¦¦fff{{{ — ADMM

l�½� (yk, λk)m©

xk+1 = Argmin
{
θ1(x)− (λk)TAx+ β

2
‖Ax+Byk − b‖2

∣∣x ∈ X},
yk+1 = Argmin

{
θ2(y)− (λk)TBy + β

2
‖Axk+1 +By − b‖2

∣∣y ∈ Y},
λk+1 = λk − β(Axk+1 +Byk+1 − b).

ÑÑÑtttµµµ,¦¦¦fff���OOO������{{{ (ADMM)AAATTT`̀̀uuu���OOO444���zzz���{{{ (AMA)
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y²
�O��{3H{¿ÂeÚ�H{¿Âe�O(1/t)Âñ5.

• B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the Douglas -

Rachford alternating direction method, SIAM J. Numerical Analysis 50(2012),

700-709. H{¿Âe�Âñ�Ç.

w̃ ∈ W and sup
w∈D(w̃)

{
θ(ũ)− θ(u) + (w̃ − w)TF (w)

}
≤ ε.

θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2α(t+ 1)
‖v − v0‖2H , ∀w ∈ Ω.

• B.S. He and X.M. Yuan, On non-ergodic convergence rate of Douglas -

Rachford alternating directions method of multipliers, Numerische

Mathematik, 130 (2015) 567-577. :�¿Âe�Âñ�Ç.
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SIAM Numerical Analysis 2012©Ù�K�

2012cuL±5,Êc5~3TrÔ�9:Ø©¥ü¶cn.
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Boyd� ADMM��§J�·��k'nØó�:



39

­.êÆ5y¬Æþ, Plenary SpeakerJ�·��ó�:
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Numerische Mathematik 2015©©©ÙÙÙ���(((ØØØ���KKK���

Ø

∥∥∥∥∥∥
B(yk+1 − y∗)
λk+1 − λ∗

∥∥∥∥∥∥

2

H

≤

∥∥∥∥∥∥
B(yk − y∗)
λk − λ∗

∥∥∥∥∥∥

2

H

−

∥∥∥∥∥∥
B(yk − yk+1)

λk − λk+1

∥∥∥∥∥∥

2

H

,

�k ∥∥∥∥∥∥
B(yk+1 − yk+2)

λk+1 − λk+2

∥∥∥∥∥∥

2

H

≤

∥∥∥∥∥∥
B(yk − yk+1)

λk − λk+1

∥∥∥∥∥∥

2

H

.

Ïdk
:�¿Âe�Âñ�Ç

ADMMk PPA�{ (Øòÿ5�±	)�¤k¤�5�



41

3.2 ���CCC:::���{{{ÚÚÚOOO222 Lagrange¦¦¦fff{{{���òòòÿÿÿ555���

ààà`̀̀zzz¯̄̄KKK min{θ(x) | x ∈ X}

PPA���{{{ xk+1 = Argmin{θ(x) + r
2
‖x− xk‖2 | x ∈ X}

Ì�5�

• ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2,

• ‖xk+1 − xk+2‖ ≤ ‖xk − xk+1‖.

òòòÿÿÿ xk+1 := xk − γ(xk − xk+1), γ ∈ (0, 2).

mà� xk+1´�C:�{ (PPA)�).
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ààà`̀̀zzz¯̄̄KKK min{θ(x) | Ax = b, x ∈ X}

O2 Lagrange¼êµLβ(x, λ) = θ(x)− λT (Ax− b) + β
2 ‖Ax− b‖2.

OOO222 Lagrange¦¦¦fff{{{ (ALM)

{
xk+1 = Argmin{Lβ(x, λk) | x ∈ X}
λk+1 = λk − β(Axk+1 − b)

Ì�5�

• ‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − ‖λk − λk+1‖2,
• ‖λk+1 − λk+2‖ ≤ ‖λk − λk+1‖.

òòòÿÿÿ λk+1 := λk − γ(λk − λk+1), γ ∈ (0, 2).

mà� λk+1´O2 Lagrange ¦f{�).

PPAÚÚÚALM���±±±òòòÿÿÿ���555���ADMMUUUØØØUUUkkk? ···���UUUEEE���±±±kkk!
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3.3 üüü������fff¯̄̄KKK��� ADMM���{{{��� (ÌÌÌ���)UUU???

1. ADMM in sense of PPA������^̂̂SSS¿¿¿			òòò l (yk, λk)Ñu.









xk+1 = Argmin{Lβ(x, yk, λk) |x ∈ X},
λk+1 = λk − β(Axk+1 +Byk − b),
yk+1 = Argmin{Lβ(xk+1, y, λk+1) | y ∈ Y},

(3.2a)





yk+1 := yk − γ(yk − yk+1),

λk+1 := λk − γ(λk − λk+1).
£tµòÿ¤ (3.2b)

ùp γ ∈ (0, 2).D�Ò := L« (3.2b)mà� (yk+1, λk+1)´d�

{�c�Ü© (3.2a)�)�.éõê¯K,ù�  U\¯Âñ�Ý.

• X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point

algorithms revisit on the alternating direction method of

multipliers, Science China Math., 56 (2013), 2179-2186.
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2. Symmetric ADMM ééé¡¡¡������OOO������{{{

�©Cþ xÚ y��þ´²��.¤±ïÆæ^é¡��O��{.

Symmetric Alternating Direction Method of Multipliers is described as




xk+1 = Argmin{Lβ(x, yk, λk) |x ∈ X},

λk+ 1
2 = λk − µβ(Axk+1 +Byk − b),

yk+1 = Argmin{Lβ(xk+1, y, λk+ 1
2 ) | y ∈ Y},

λk+1 = λk+ 1
2 − µβ(Axk+1 +Byk+1 − b).

(3.3)

wehre µ ∈ (0, 1) (usually µ = 0.9).

• B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive

Peaceman- Rachford splitting method for convex programming,

SIAM Journal on Optimization 24(2014), 1011-1040.
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4 õõõ������©©©lll���fff���ààà`̀̀zzz¯̄̄KKK

·�± 3��©l�f�¯K�~

min{θ1(x) + θ2(y) + θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}. (4.1)

ù�¯K�O2 Lagrange¼ê´

L3
β(x, y, z, λ) = θ1(x)+θ2(y)+θ3(z)−λT (Ax+By+Cz−b)+β

2
‖Ax+By+Cz−b‖2.

xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X},
yk+1 = arg min

{
L3
β(xk+1, y, zk, λk)

∣∣ y ∈ Y},
zk+1 = arg min

{
L3
β(xk+1, yk+1, z, λk)

∣∣ z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(4.2)

ém ≥ 3,��í2��O��{ØU�yÂñ.

• C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM

for multi-block convex minimization problems is not necessarily convergent,

Mathematical Programming, 155 (2016) 57-79.
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a�×¶Î�Ç5¿�·��ó�,�^
�Ü·�÷¿�ì¡.
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a�×¶Î�Ç3�
ISØ�Ó�J�·�3 ADMM�¡�ó�
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������ííí222 ADMMµµµ·�uL3 2016 Math.Progr.�n��f¯K

min{θ1(x) + θ2(y) + θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}

�1��~f¥, θ1(x) = θ2(y) = θ3(z) = 0, X = Y = Z = <,

A = [A,B,C] ∈ <3×3 ´��ÛÉÝ
, b = 0 ∈ <3.

�k�
âdò��~f,y²
��í2� ADMM¿ØÂñ.

ù
~f�õ�´3nØ�¡�¿Â.

������UUUYYYïïïÄÄÄ���¯̄̄KKKµn��f�¢S¯K¥,�5�åÝ


A = [A,B,C]   ��k��´ü Ý
,=, A = [A,B, I].

��í2� ADMM?nù«�bC¢S�n��f�¯K,

QQQvvvkkkyyy²²²ÂÂÂñññ§§§���vvvkkkÞÞÞÑÑÑ���~~~§§§���888···���uuu%%%ØØØ[[[������
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ÞÞÞ���{{{üüü���~~~fff555`̀̀ :

• ¦f�O��{ (ADMM)?n¯K

min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y} ´Âñ�.

• ò�ª�å�¤Ø�ª�å,¯KÒC¤

min{θ1(x) + θ2(y)|Ax+By ≤ b, x ∈ X , y ∈ Y}.

• 2z¤n��f��ª�å¯K

min{θ1(x) + θ2(y) + 0 |Ax+By + z = b, x ∈ X , y ∈ Y, z ≥ 0}

• ��í2� ADMM?nþ¡ù«¯K,Ø�<�L}Á,�´�

8Qvky²Âñ5,�vkÞÑ�~�

Äuþã@�,·�én��f�¯KJÑ
�
?��{.5¿µ

·���{é¯KØ\?Û^��é βØ\��,�é�{ÄÃâ�
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4.1 ²²²111???nnn���-ýýýÿÿÿ���������{{{

²1©��O2.�KF¦f{




²1?n
x, y, z

f¯K2
�# λ,
�ýÿ:








x̃k = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

ỹk = arg min
{
L3
β(xk, y, zk, λk)

∣∣ y ∈ Y
}
,

z̃k = arg min
{
L3
β(xk, yk, z, λk)

∣∣ z ∈ Z
}
,

λ̃k = λk − β(Ax̃k +Bỹk + Cz̃k − b).

x, y, zf¯K²1
,�gd.dù
x, y, z�#� λ,ÑI����

[
{ü��

]
wk+1 = wk − αk(wk − w̃k), w =




x

y

z

λ



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zÚ� α�±ÏL

αk = γα∗k, γ ∈ (0, 2), α∗k =
ϕ(wk, w̃k)

‖wk − w̃k‖2M
�Ñ,Ù¥

M =


βATA 0 0 0

0 βBTB 0 0

0 0 βCTC 0

0 0 0 1
β
I

+ β


AT

BT

CT

0


(
A, B, C, 0

)

´é¡��½Ý
,

ϕ(wk, w̃k) = ‖wk − w̃k‖2M
+2(λk − λ̃k)T [A(xk − x̃k) +B(yk − ỹk) + C(zk − z̃k)]. (4.3)
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��/ª´{ü�,O�Ú��´�
{ü�$�,�±y²

αk ≥
2−
√

3

2
.

ýÿ-��,´·�lÝKÂ �{m©��{µe. ýÿ�´J

øÂ ��, ���O�Ú�,�±(� ‖wk − w∗‖M eüÂ .

©Ù 2009cuL3 Computational Optimization and Applications.

• B.S. He, Parallel splitting augmented Lagrangian methods for

monotone structured variational inequalities, Computational

Optimization and Applications, 42, 195-212, 2009. ù�©Ù

• Received: 22 April 2007
• Revised: 29 September 2007
• Published online: 6 November 2007

Ïd,��±w�·Ú ADMM 20c¥c�q����ó�.
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������±±±rrr x���¤¤¤¥¥¥mmmCCCþþþ,SSS��� (yk, zk, λk)→ (yk+1, zk, λk)µµµ




k¦ x̃k, ,

�²1?n

n y, zf¯

K,2�# λ

)¤ýÿ:








x̃k = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

ỹk = arg min
{
L3
β(x̃k, y, zk, λk)

∣∣ y ∈ Y
}
,

z̃k = arg min
{
L3
β(x̃k, yk, z, λk)

∣∣ z ∈ Z
}
,

λ̃k = λk − β(Ax̃k +Bỹk + Cz̃k − b).

y, zf¯K²1
,�gd.�)âd�#� λ,ÑI����

[
{ü��

]
vk+1 = vk − αk(vk − ṽk), v =




y

z

λ




5¿ùp���� (y, z, λ),�e�ÚS�Jø (yk+1, zk+1, λk+1).
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zÚ� α�±ÏL

αk = γα∗k, γ ∈ (0, 2), α∗k =
ϕ(wk, w̃k)

‖wk − w̃k‖2M
�Ñ,Ù¥

M =


βBTB 0 0

0 βCTC 0

0 0 1
β
I


´é¡��½Ý
,

ϕ(wk, w̃k) = ‖wk − w̃k‖2M
+2(λk − λ̃k)T [B(yk − ỹk) + C(zk − z̃k)].

��/ª´{ü�,O�Ú��´�
{ü�$�,�±y²

αk ≥
2−
√

2

2
.
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4.2 ���pppddd£££������ ADMM���{{{

± (4.2)Jø� (yk+1, zk+1)�ýÿ,� α ∈ (0, 1),��úª�
(
yk+1

zk+1

)
:=

(
yk

zk

)
− α

(
I −(BTB)−1BTC

0 I

)(
yk − yk+1

zk − zk+1

)
. (4.4)

du�e�ÚS���O� (Byk+1, Czk+1, λk+1),·����
(
Byk+1

Czk+1

)
:=

(
Byk

Czk

)
− α

(
I −I
0 I

)(
B(yk − yk+1)

C(zk − zk+1)

)
.

• B. S. He, M. Tao and X.M. Yuan, Alternating direction method

with Gaussian back substitution for separable convex

programming, SIAM Journal on Optimization 22(2012), 313-340.

é yÚ z,kk�,Øú²,@Ò��éÖ,N�
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4.3 ADMM + Prox-Parallel Splitting ALM




r
�
y, z

²
�








xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

yk+1 = arg min
{
L3
β(xk+1, y, zk, λk)

∣∣ y ∈ Y
}
,

zk+1 = arg min
{
L3
β(xk+1, yk, z, λk)

∣∣ z ∈ Z
}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

y, zf¯K²1,XJØ���?n,Ò�§�èýkÑ\��K�




xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

yk+1 = arg min
{
L3
β(xk+1, y, zk, λk) + τ

2β‖B(y − yk)‖2
∣∣y ∈ Y

}
,

zk+1 = arg min
{
L3
β(xk+1, yk, z, λk) + τ

2β‖C(z − zk)‖2
∣∣z ∈ Z

}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).
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þã�{��uµ

xk+1 = Argmin{θ1(x) + β
2
‖Ax+Byk + Czk − b− 1

β
λk‖2 |x ∈ X},

λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =Argmin{θ2(y)−(λk+
1
2 )TBy + µβ

2
‖B(y − yk)‖2 | y ∈ Y},

zk+1 =Argmin{θ3(z)−(λk+
1
2 )TCz + µβ

2
‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(4.5)

Ù¥ µ > 2.~X,�±� µ = 2.01.

• B. He, M. Tao and X. Yuan, A splitting method for separable

convex programming. IMA J. Numerical Analysis, 31(2015),

394-426.

�gd,qØ��,Ò\�K�,Ø#gC�U�«ì.
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This method is accepted by Osher’s research group

• E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for

non-negative matrix factorization and dimensionality reduction on physical

space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY 2012 3239

A Convex Model for Nonnegative Matrix
Factorization and Dimensionality
Reduction on Physical Space

Ernie Esser, Michael Möller, Stanley Osher, Guillermo Sapiro, Senior Member, IEEE, and Jack Xin

Abstract—A collaborative convex framework for factoring a
data matrix into a nonnegative product , with a sparse
coefficient matrix , is proposed. We restrict the columns of the
dictionary matrix to coincide with certain columns of the data
matrix , thereby guaranteeing a physically meaningful dictio-
nary and dimensionality reduction. We use regularization
to select the dictionary from the data and show that this leads to
an exact convex relaxation of in the case of distinct noise-free
data. We also show how to relax the restriction-to- constraint
by initializing an alternating minimization approach with the
solution of the convex model, obtaining a dictionary close to but
not necessarily in . We focus on applications of the proposed
framework to hyperspectral endmember and abundance identifi-
cation and also show an application to blind source separation of
nuclear magnetic resonance data.

Index Terms—Blind source separation (BSS), dictionary
learning, dimensionality reduction, hyperspectral endmember de-
tection, nonnegative matrix factorization (NMF), subset selection.

I. INTRODUCTION

D IMENSIONALITY reduction has been widely studied in
the signal processing and computational learning com-

munities. One of the major drawbacks of virtually all popular
approaches for dimensionality reduction is the lack of phys-
ical meaning in the reduced dimension space. This significantly
reduces the applicability of such methods. In this paper, we
present a framework for dimensionality reduction, based on ma-
trix factorization and sparsity theory, that uses the data itself
(or small variations from it) for the low-dimensional representa-
tion, thereby guaranteeing physical fidelity. We propose a new
convex method to factor a nonnegative data matrix into a
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February 19, 2012. Date of publication March 06, 2012; date of current ver-
sion June 13, 2012. The work of E. Esser and J. Xin was supported in part by
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sociate editor coordinating the review of this manuscript and approving it for
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product , for which is nonnegative and sparse and the
columns of coincide with columns from the data matrix .
The organization of this paper is as follows. In the remainder

of the introduction, we further explain the problem, summarize
our approach, and discuss applications and related work. In
Section II, we present our proposed convex model for end-
member (dictionary) computation that uses regularization
to select as endmembers a sparse subset of columns of , such
that sparse nonnegative linear combinations of them are capable
of representing all other columns. Section III shows that, in the
case of distinct noise-free data, regularization is an exact
relaxation of the ideal row-0 norm (number of nonzero rows) and
furthermore proves the stability of our method in the noisy case.
Section IV presents numerical results for both synthetic and real
hyperspectral data. In Section V, we present an extension of our
convex endmember detection model that is better able to handle
outliers in the data. We discuss its numerical optimization, com-
pare its performance to the basic model, and also demonstrate
its application to a blind source separation (BSS) problem based
on nuclear magnetic resonance (NMR) spectroscopy data.

A. Summary of the Problem and Geometric Interpretation

The underlying general problem of representing
with 0 is known as nonnegative matrix factorization
(NMF). Variational models for solving NMF problems are typi-
cally nonconvex and are solved by estimating and alternat-
ingly. Although variants of alternating minimization methods
for NMF often produce good results in practice, they are not
guaranteed to converge to a global minimum.
The problem can be greatly simplified by assuming a partial

orthogonality condition on matrix as is done in [1] and [2].
More precisely, the assumption is that, for each row of , there
exists some column such that 0 and for .
Under this assumption, NMF has a simple geometric interpreta-
tion. Not only should the columns of appear in the data up
to scaling but the remaining data should be expressible as non-
negative linear combinations of these columns. Therefore, the
problem of finding is to find columns in , preferably as few
as possible, that span a cone containing the rest of the data .
Fig. 1 illustrates the geometry in three dimensions.
The problem we actually want to solve is more difficult than

NMF in a couple respects. One reason is the need to deal with
noisy data. While NMF by itself is a difficult problem already,
the identification of the vectors becomes even more difficult if
the data contain noise and we need to find a low-dimensional
cone that contains most of the data (see the lower right image in
Fig. 1). Notice that in the noisy case, finding vectors such that all
data are contained in the cone they span would lead to a drastic

1057-7149/$31.00 © 2012 IEEE
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Fig. 4. Spectral signatures of endmembers extracted by different methods. (Top row) Results of our method and the alternating minimization approach. (Bottom
row) Endmembers found by N-findr, QR, and VCA.

Fig. 5. Region of possible values for .

restrict each column to lie in a hockey-puck-shaped disk .
Decompose , where is the orthogonal pro-
jection of onto the line spanned by and is the radial

component of perpendicular to . Then, given ,

we restrict and . The or-
thogonal projection onto this set is straightforward to compute
since it is a box constraint in cylindrical coordinates. This con-
straint set for is shown in Fig. 5 in the case when .
We also allow for a few columns of the data to be outliers.

These are columns of that we do not expect to be well repre-
sented as a small error plus a sparse nonnegative linear com-
bination of other data but that we also do not want to con-
sider as endmembers. Given some , this sparse error
is modeled as with restricted to the convex set

and . Since is the non-
negative region of a weighted ball, the orthogonal projection
onto can be computed with complexity. Here,
since the weights sum to one by definition, can be roughly
interpreted as the fraction of data we expect to be outliers. For
nonoutlier data , we want , and for outlier data, we
want . In the latter outlier case, regularization on matrix

should encourage the corresponding column to be close to
zero; hence, is encouraged to be small rather than close
to one.
Keeping the regularization, the nonnegativity constraint,

and theweighted penalty from (6), the overall extendedmodel
is given by

such that (15)

The structure of this model is similar to the robust principal
component analysis model proposed in [33] although it has a
different noise model and uses regularization instead of the
nuclear norm.

B. Numerical Optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable
and constraint . In addition, let and be Lagrange
multipliers for constraints and

, respectively. Then, the augmented Lagrangian
is given by
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Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to the
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5 ©©©���ÂÂÂ   ���{{{���ÚÚÚ���µµµeee

éC©Ø�ª

u∗ ∈ Ω, (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω.

ÏLÀ�·�� β > 0ÚÝK�)ýÿ: ũk:

ũk = PΩ[uk − βF (uk)].

�âÝK�Ä�5�k

(u− ũk)TβF (ũk) ≥ (u− ũk)T d(uk, ũk), ∀u ∈ Ω. (5.1)

ëê βÀ�¦� (uk − ũk)T d(uk, ũk) ≥ δ‖uk − ũk‖2. δ > 0�~ê.

·��¦)�´Xe�·ÜüNC©Ø�ªµ

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω.

3(�.à`z¥, u = (x, y), w = (x, y, λ), Ø%Cþ´ v = (y, λ).
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ÏL¦)�
f¯K,�)�ýÿ: w̃k ∈ Ω´� (5.1)aq�

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω,

(5.2)

�).Ù¥ QT +Q ���½½½ ò (5.1)�¹udw��²x

(u− ũk)TβF (ũk) ≥ (u− ũk)T d(uk, ũk), ∀u ∈ Ω.

Ïd, (5.2)¥�Q(vk− ṽk)��u (5.1)¥� d(uk, ũk). éØÓ�¯K,

ýÿÑJø
eü��. ��½Ý
H ,¦M = H−1Q, (5.2)ÒC¤

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥ (v − ṽk)THM(vk − ṽk), ∀ w ∈ Ω.

·�^��úª vk+1 = vk −M(vk − ṽk), �)#�S�:.
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w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥ (v − ṽk)TH(vk − vk+1), ∀w ∈ Ω.

Ï�H �½,Ò�±8(� PPA�µe¥

éýÿÚ��úª¥�Ý
QÚM ,XJ

H = QM−1 � 0, (5.3a)

¿�

G = QT +Q−MTHM � 0, (5.3b)

�{Ò´Âñ�,¿�äkO(1/t)�Âñ�Ç.

������{{{üüü���ßßß���µµµeeeééé���OOOÚÚÚµµµddd���{{{´́́ééékkk���ÏÏÏ���
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c¡®²©OJ�

ÊÏ��ÆêÆ, Ä��`z~£ Ú7���¬¢�.

¥Æ�ênÄ: .¥Æ)Ò¬�y���Ð�ð�ª

(a− b)(c− d)

=
1

2

[
(a− d)2 − (a− c)2

]
+

1

2

[
(c− b)2 − (d− b)2

]

�
·��a.

z ��ù
ªf,�a�·�É�ûÐ¥Æ�� z

|^þ¡�ð�ª?nµ(v − ṽk)TH(vk − vk+1)
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z k'Ú�µeeÂñ5�{üy²�±l·�Ì�

maths.nju.edu.cn/˜hebma�5My Talks6¥
1n��w� §4¥é�.
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zC©Ø�ª´©Ûà`z©�Â �{�kåóä.

3C©Ø�ªµeeÂñ5y²´�~{ü�.

zùÌì¡`²,·�3ç�þ^Ø���Ì,ÒUr
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ADMMØ´·�JÑ5�"k
 10cÝKÂ �{

�ïÄ�Ä:,¦�·é ADMMa�{�	a,�"�
+Æ)éADMM�{��
kd��U?Úy²�

­��nØ(J§B^n¤Ù"

�{þ§��
�©Cþ y ÚéóCþ �gS§?


��ÏI½�� PPA ¿Âe� ADMM (Science in
China, Mathematics, 2013)¶

²�é��©Cþ xÚ y§üg��éóCþ�§Ò

��é¡.� ADMM (SIAM Optimization, 2014)"

ù
�{§�nþUÕ4�§O�Ly�Ø�"
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nØþ§·�y²
 ADMM3H{¿Âe (SIAM Nu-
merical Analysis§2012)Ú:�¿Âe(Numer. Mathe-
matik, 2015)�O(1/t)�Âñ�Ç.y²ÑØE,.

ADMM�2�A^§<�g,���n��fÚõ�
�f�¯Kí2"

·�3ØUy²/��í2��{0Âñ��ÿ§J

Ñ
�
?nõ��f¯K�ADMMa�{

(SIAM Optimization, 2012; IMA Numerical Analysis, 2015).

�ISÍ¶Æö^5)û¦���ÆO�¯K"
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�5·�q�Ñ/��í2�ADMM�{?nn��

f¯KØ�yÂñ0�~f(Math. Progr., 2016),`²:

• ·�?nõ��f� ADMMa�{¥æ^/Øú²
ÒéÖ��0(SIAM Optimization, 2012) Ú

• /�g��?nf¯K§Ò7L\�K�\rg·
!�0(IMA Numer. Analysis, 2015)

�üÑ§Ããþ´7L�§Å�þ�´Ün�"

Ñu:�(§  ¯�
õ�"ùA�c§)¹ng

��Ï§¦�·��Ú�Úr���Ø�"
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[6] E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for non-negative matrix factorization and

dimensionality reduction on physical space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.

[7] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity problems, Volume

I, Springer Series in Operations Research, Springer-Verlag, 2003.

[8] D. Gabay, Applications of the method of multipliers to variational inequalities, Augmented Lagrange Methods:

Applications to the Solution of Boundary-valued Problems, edited by M. Fortin and R. Glowinski, North Holland,

Amsterdam, The Netherlands, 1983, pp. 299–331.

[9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, Berlin,



76

Heidelberg, Tokyo, 1984.

[10] D. Hallac, Ch. Wong, S. Diamond, A. Sharang, R. Sosic̆, S. Boyd and J. Leskovec, SnapVX: A Network-Based

Convex Optimization Solver, Journal of Machine Learning Research 18 (2017) 1-5.

[11] B. S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,

Computational Optimization and Applications 42(2009), 195–212.

[12] B. S. He, PPA-like contraction methods for convex optimization: a framework using variational inequality

approach. J. Oper. Res. Soc. China 3 (2015) 391õ420.

[13] B. S. He, L. Z. Liao, D. Han, and H. Yang, A new inexact alternating directions method for monontone variational

inequalities, Mathematical Programming 92(2002), 103–118.

[14] B.S. He, Li-Zhi Liao and Mai-jian Qian, Alternating projection based prediction-correction methods for structured

variational inequalities, Journal of Computational Mathematics, 24(6), 693-710, 2006.

[15] B. S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive Peaceman-Rachford splitting method for

convex programming, SIAM Journal on Optimization 24(2014), 1011-1040.

[16] B. S. He, M. Tao and X.M. Yuan, Alternating direction method with Gaussian back substitution for separable

convex programming, SIAM Journal on Optimization 22(2012), 313-340.

[17] B.S. He, M. Tao and X.M. Yuan, A splitting method for separable convex programming, IMA J. Numerical

Analysis 31(2015), 394-426.

[18] B. S. He, M. H. Xu, and X. M. Yuan, Solving large-scale least squares covariance matrix problems by

alternating direction methods, SIAM Journal on Matrix Analysis and Applications 32(2011), 136-152.

[19] B. S. He and H. Yang, Some convergence properties of a method of multipliers for linearly constrained

monotone variational inequalities, Operations Research Letters 23(1998), 151–161.



77

[20] B.S. He, H. Yang, and S.L. Wang, Alternating directions method with self-adaptive penalty parameters for

monotone variational inequalities, JOTA 23(2000), 349–368.

[21] B. S. He and X. M. Yuan, On theO(1/t) convergence rate of the alternating direction method, SIAM J.

Numerical Analysis 50(2012), 700-709.

[22] B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From

contraction perspective, SIAM J. Imag. Science 5(2012), 119-149.

[23] B.S. He and X.M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating directions method of

multipliers, Numerische Mathematik, 130 (2015) 567-577.

[24] M. R. Hestenes, Multiplier and gradient methods, JOTA 4, 303-320, 1969.

[25] B. Martinet, Regularisation, d’inéquations variationelles par approximations succesives, Rev. Francaise

d’Inform. Recherche Oper., 4, 154-159, 1970.

[26] A. Nemirovski. Prox-method with rate of convergenceO(1/t) for variational inequalities with Lipschitz

continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15 (2004),

229–251.

[27] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Verlag, New York, 1999.

[28] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed.,

Academic Press, New York, NY, pp. 283-298, 1969.

[29] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Cont. Optim., 14, 877-898,

1976.

[30] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, manuscript, 2008.



78

Thank you very much for your attention !


