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1 Preliminaries – Convex Optimization Variational
Inequality and Proximal Point Algorithms

1.1 Differential convex optimization and monotone VI
Let Ω ⊂ <n, we consider the convex minimization problem

min{f(x) | x ∈ Ω}. (1.1)

What is the first-order optimal condition ?

x∗ ∈ Ω∗ ⇔ x∗ ∈ Ω and any feasible direction is not descent direction.

Optimal condition in variational inequality form

• Sd(x) = {s ∈ <n | sT∇f(x) < 0} = Set of the descent directions.

• Sf (x) = {s ∈ <n | s = x′ − x, x′ ∈ Ω} = Set of feasible directions.

x ∈ Ω∗ ⇔ x ∈ Ω and Sf (x) ∩ Sd(x) = ∅.

6

The optimal condition can be presented in a variational inequality (VI) form:

x∗ ∈ Ω, (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ Ω. (1.2)

Substituting∇f(x) with an operator F (from<n into itself), we get a classical VI.'
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Fig. 1.1 Differential Convex Optimization and VI

Since f(x) is a convex function, we have

f(y) ≥ f(x)+∇f(x)T (y−x) and thus (x−y)T (∇f(x)−∇f(y)) ≥ 0.

We say the gradient∇f of the convex function f is a monotone operator.
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A function f(x) is convex iff

f((1−θ)x+θy) ≤ (1−θ)f(x)+θf(y)

∀θ ∈ [0, 1].

Properties of convex function

• f ∈ C1. f is convex iff

f(y)− f(x) ≥ ∇f(x)T (y − x).

Thus, we have also

f(x)− f(y) ≥ ∇f(y)T (x− y).

• Adding above two inequalities, we get

(y − x)T (∇f(y)−∇f(x)) ≥ 0.

ààà¼¼¼êêê���½½½ÂÂÂÚÚÚÄÄÄ���555���

• f ∈ C1,∇f is monotone. f ∈ C2,∇2f(x) is positive semi-definite.

• Any local minimum of a convex function is a global minimum.
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For the analysis in this paper, we need only the basic property which is described

in the following lemma.

Lemma 1.1 Let X ⊂ <n be a closed convex set, θ(x) and f(x) be convex

functions and f(x) is differentiable. Assume that the solution set of the

minimization problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ ∈ arg min{θ(x) + f(x) |x ∈ X} (1.3a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (1.3b)

ProofµFirst, if (1.3a) is true, then for any x ∈ X , we have

θ(xα)− θ(x∗)
α

+
f(xα)− f(x∗)

α
≥ 0, (1.4)

where

xα = (1− α)x∗ + αx, ∀α ∈ (0, 1].

2
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Because θ(·) is convex, it follows that

θ(xα) ≤ (1− α)θ(x∗) + αθ(x),

and thus

θ(x)− θ(x∗) ≥ θ(xα)− θ(x∗)
α

, ∀α ∈ (0, 1].

Substituting the last inequality in the left hand side of (1.4), we have

θ(x)− θ(x∗) +
f(xα)− f(x∗)

α
≥ 0, ∀α ∈ (0, 1].

Using f(xα) = f(x∗ + α(x− x∗)) and letting α→ 0+, from the above

inequality we get

θ(x)− θ(x∗) +∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ X .

Thus (1.3b) follows from (1.3a). Conversely, since f is convex, it follow that

f(xα) ≤ (1− α)f(x∗) + αf(x)

10

and it can be rewritten as

f(xα)− f(x∗) ≤ α(f(x)− f(x∗)).

Thus, we have

f(x)− f(x∗) ≥ f(xα)− f(x∗)
α

=
f(x∗ + α(x− x∗))− f(x∗)

α
,

for all α ∈ (0, 1]. Letting α→ 0+, we get

f(x)− f(x∗) ≥ ∇f(x∗)T (x− x∗).

Substituting it in the left hand side of (1.3b), we get

x∗ ∈ X , θ(x)− θ(x∗) + f(x)− f(x∗) ≥ 0, ∀x ∈ X ,

and (1.3a) is true. The proof is complete. 2
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1.2 Linear constrained convex optimization and VI

We consider the linearly constrained convex

optimization problem

min{θ(u) | Au = b, u ∈ U}. (1.5)

The Lagrangian function of the problem (1.5) is

L(u, λ) = θ(u)− λT (Au− b),

which is defined on U × <m.

A pair of (u∗, λ∗) is called a saddle point of the Lagrange function, if

Lλ∈<m(u∗, λ) ≤ L(u∗, λ∗) ≤ Lu∈U (u, λ∗).

An equivalent expression of the saddle point is the following variational inequality:




u∗ ∈ U , θ(u)− θ(u∗) + (u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U ,
λ∗ ∈ <m, (λ− λ∗)T (Au∗ − b) ≥ 0, ∀ λ ∈ <m.

12

Thus, by denoting

w =


 u

λ


 , F (w) =


 −ATλ
Au− b


 and Ω = U × <m, (1.6)

the optimal condition can be characterized as a monotone variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (1.7)

Note that the operator F is monotone, because

(w− w̃)T(F (w)−F (w̃)) ≥ 0, Here (w − w̃)T(F (w)−F (w̃)) = 0. (1.8)

Example 1 of the problem (1.5): Finding the nearest correlation matrix

A positive semi-definite matrix, whose each diagonal element is equal 1, is called
the correlation matrix. For given symmetric n× n matrix C , the mathematical
form of finding the nearest correlation matrix X is

min{ 1
2‖X − C‖2F | diag(X) = e, X ∈ Sn+}, (1.9)

4
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where Sn+ is the positive semi-definite cone and e is a n-vector whose each

element is equal 1. The problem (1.9) is a concrete problem of type (1.5).

Example 2 of the problem (1.5): The matrix completion problem

Let M be a given m× n matrix, Π is the elements

indices set of M ,

Π ⊂ {(ij)|i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}.
The mathematical form of the matrix completion

problem is relaxed to

min{‖X‖∗ | Xij = Mij , (ij) ∈ Π}, (1.10)

where ‖ · ‖∗ is the nuclear norm–the sum of the sin-

gular values of a given matrix. The problem (1.10) is

a convex optimization of form (1.5). The matrix A in

(1.5) for the linear constraints

Xij = Mij , (ij) ∈ Π,

is a projection matrix, and thus ‖ATA‖ = 1.

M is low Rank, only some

elements of M are known.

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

14

Convex optimization problem with two separable objective functions

Some convex optimization problems have the following separable structure:

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}.

The Lagrangian function of this problem is

L(2)(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b).
The saddle point ((x∗, y∗), λ∗) of L(2)(x, y, λ) is a solution of the following VI:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω,

where

w =




x
y

λ


 , u =


 x

y


 , F (w) =




−ATλ
−BTλ

Ax+By − b


 ,

and

θ(u) = θ1(x) + θ2(y), Ω = X × Y × <m.

5
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Convex optimization problem with three separable objective functions

min{θ1(x) + θ2(y) + θ3(z) |Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}.

Its Lagrangian function is

L(3)(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b).
The saddle point ((x∗, y∗, z∗), λ∗) of L(3)(x, y, z, λ) is a solution of the VI:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω,

where

w =




x
y

z

λ


 , u =




x

y

z


 , F (w) =




−ATλ
−BTλ
−CTλ

Ax+By + Cz − b



,

and

θ(u) = θ1(x) + θ2(y) + θ3(z), Ω = X × Y × Z × <m.

16

1.3 Proximal point algorithms for convex optimization

Lemma 1.2 Let the vectors a, b ∈ <n,H ∈ <n×n be a positive definite matrix.

If bTH(a− b) ≥ 0, then we have

‖b‖2H ≤ ‖a‖2H − ‖a− b‖2H . (1.11)

The assertion follows from ‖a‖2H = ‖b+ (a− b)‖2H ≥ ‖b‖2H +‖a− b‖2H .

Convex Optimization Now, let us consider the simple convex optimization

min{θ(x) + f(x) | x ∈ X}, (1.12)

where θ(x) and f(x) are convex but θ(x) is not necessary smooth, X is a

closed convex set.

For solving (1.12), the k-th iteration of the proximal point algorithm (abbreviated to

PPA) [31, 34] begins with a given xk, offers the new iterate xk+1 via the recursion

xk+1 = Argmin{θ(x) + f(x) +
r

2
‖x− xk‖2 | x ∈ X}. (1.13)

6
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Since xk+1 is the optimal solution of (1.13), it follows from Lemma 1.1 that

θ(x)−θ(xk+1)+(x− xk+1)T {∇f(xk+1) + r(xk+1 − xk)} ≥ 0, ∀x ∈ X .
(1.14)

Setting x = x∗ in the above inequality, it follows that

(xk+1−x∗)T r(xk−xk+1) ≥ θ(xk+1)−θ(x∗)+(xk+1−x∗)T∇f(xk+1).

(1.15)

Since

(xk+1 − x∗)T∇f(xk+1) ≥ (xk+1 − x∗)T∇f(x∗),

it follows that the right hand side of (1.15) is nonnegative. And consequently,

(xk+1 − x∗)T (xk − xk+1) ≥ 0. (1.16)

Let a = xk − x∗ and b = xk+1 − x∗ and using Lemma 1.2, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2, (1.17)

which is the nice convergence property of Proximal Point Algorithm.

18

The residue sequence {‖xk − xk+1‖} is also monotonically no-increasing.

Proof. Replacing k + 1 in (1.14) with k, we get

θ(x)− θ(xk) + (x− xk)T {∇f(xk) + r(xk − xk−1)} ≥ 0, ∀x ∈ X .

Let x = xk+1 in the above inequality, it follows that

θ(xk+1)− θ(xk) + (xk+1 − xk)T {∇f(xk) + r(xk − xk−1)} ≥ 0. (1.18)

Setting x = xk in (1.14), we become

θ(xk)− θ(xk+1) + (xk − xk+1)T {∇f(xk+1) + r(xk+1 − xk)} ≥ 0. (1.19)

Adding (1.18) and (1.19) and using (xk − xk+1)T [∇f(xk)−∇f(xk+1)] ≥ 0,

(xk − xk+1)T {(xk−1 − xk)− (xk − xk+1)} ≥ 0. (1.20)

Setting a = xk−1 − xk and b = xk − xk+1 in (1.20) and using (1.11), we obtain

‖xk−xk+1‖2 ≤ ‖xk−1−xk‖2−‖(xk−1−xk)−(xk−xk+1)‖2. (1.21)

7
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We write the problem (1.12) and its PPA (1.13) in VI form

The equivalent variational inequality form of the optimization problem (1.12) is

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (1.22a)

For solving the problem (1.12), the variational inequality form of the k-th iteration of

the PPA (see (1.14)) is:

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)T∇f(xk+1)

≥ (x− xk+1)T r(xk − xk+1), ∀x ∈ X .
(1.22b)

PPA reaches the solution of (1.22a) via solving a series of subproblems (1.22b).

æ^�´ÚÚ�E�üÑ,­S­��

Using (1.22), we study PPA for VI arising from the constrained optimization

20

1.4 Preliminaries of PPA for Variational Inequalities

The optimal condition of the problem (1.5) is characterized as a mixed monotone

variational inequality:

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (1.23)

PPA for VI in Euclidean-norm For given wk and r > 0, find wk+1

wk+1 ∈ Ω, θ(x)− θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (w − wk+1)T r(wk − wk+1), ∀ w ∈ Ω.
(1.24)

wk+1 is called the proximal point of the k-th iteration for the problem (1.23).

z wk is the solution of (1.23) if and only if wk = wk+1 z
Setting w = w∗ in (1.24), we obtain

(wk+1−w∗)T r(wk−wk+1) ≥ θ(xk+1)−θ(x∗)+(wk+1−w∗)TF (wk+1)

8
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Note that (see the structure of F (w) in (1.6))

(wk+1 − w∗)TF (wk+1) = (wk+1 − w∗)TF (w∗),

and consequently (by using (1.23)) we obtain

(wk+1−w∗)T r(wk−wk+1) ≥ θ(xk+1)−θ(x∗)+(wk+1−w∗)TF (w∗) ≥ 0,

and thus

(wk+1 − w∗)T (wk − wk+1) ≥ 0. (1.25)

Now, by setting a = wk − w∗ and b = wk+1 − w∗ in the inequality (1.25), it

is bT (a− b) ≥ 0. Using Lemma1.2, we obtain

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − ‖wk − wk+1‖2. (1.26)

We get the nice convergence property of Proximal Point Algorithm:

The sequence {wk} generated by PPA is Fejér monotone.

22

PPA for monotone mixed VI in H-norm

For given wk, find the proximal point wk+1 in H-norm which satisfies

wk+1 ∈ Ω, θ(x)− θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (w − wk+1)TH(wk − wk+1), ∀ w ∈ Ω,
(1.27)

where H is a symmetric positive definite matrix.

z Again, wk is the solution of (1.23) if and only if wk = wk+1 z

Convergence Property of Proximal Point Algorithm in H-norm

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H . (1.28)

The sequence {wk} is Fejér monotone in H-norm. In customized PPA, via

choosing a proper positive definite matrix H , the solution of the subproblem

(1.27) has a closed form. An iterative algorithm is called the contraction method, if

its generated sequence {wk} satisfies ‖wk+1 − w∗‖2H < ‖wk − w∗‖2H .

9
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2 From PDHG to CP-PPA and Customized-PPA
We consider the min−max problem

minx maxy{Φ(x, y) = θ1(x)− yTAx− θ2(y) |x ∈ X , y ∈ Y}. (2.1)

Let (x∗, y∗) be the solution of (2.1), then we have
{

x∗ ∈ X , Φ(x, y∗)− Φ(x∗, y∗) ≥ 0, ∀x ∈ X , (2.2a)

y∗ ∈ Y, Φ(x∗, y∗)− Φ(x∗, y) ≥ 0, ∀ y ∈ Y. (2.2b)

Using the notation of Φ(x, y), it can be written as
{
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T ( Ax∗) ≥ 0, ∀ y ∈ Y.

Furthermore, it can be written as a variational inequality in the compact form:

u ∈ Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (2.3)

where

u =

(
x
y

)
, θ(u) = θ1(x) + θ2(y), F (u) =

(
−AT y
Ax

)
, Ω = X × Y.

24

Since F (u) =

(
−AT y
Ax

)
=

(
0 −AT
A 0

)(
x
y

)
, we have

(u− v)T (F (u)− F (v)) ≡ 0.

2.1 Original primal-dual hybrid gradient algorithm [38]

For given (xk, yk), PDHG [38] produces a pair of (xk+1, yk+1). First,

xk+1 = argmin{Φ(x, yk) +
r

2
‖x− xk‖2 |x ∈ X}, (2.4a)

and then we obtain yk+1 via

yk+1 = argmax{Φ(xk+1, y)− s

2
‖y − yk‖2 | y ∈ Y}. (2.4b)

Ignoring the constant term in the objective function, the subproblems (2.4) are reduced to




xk+1 = argmin{θ1(x)− xTAT yk +
r

2
‖x− xk‖2 |x ∈ X}, (2.5a)

yk+1 = argmin{θ2(y) + yTAxk+1 +
s

2
‖y − yk‖2 | y ∈ Y}. (2.5b)

According to Lemma 1.1, the optimality condition of (2.5a) is xk+1 ∈ X and

θ1(x)−θ1(xk+1)+(x−xk+1)T {−AT yk+r(xk+1−xk)} ≥ 0, ∀x ∈ X . (2.6)

10
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Similarly, from (2.5b) we get yk+1 ∈ Y and

θ2(y)− θ2(yk+1) + (y−yk+1)T {Axk+1 + s(yk+1−yk)} ≥ 0, ∀ y ∈ Y. (2.7)

Combining (2.6) and (2.7), we have

θ(u)− θ(uk+1) +

(
x− xk+1

y − yk+1

)T {(
−AT yk+1

Axk+1

)

+

(
r(xk+1 − xk)+AT (yk+1 − yk)

s(yk+1 − yk)

)}
≥ 0, ∀(x, y) ∈ Ω.

The compact form is uk+1 ∈ Ω,

θ(u)−θ(uk+1)+(u−uk+1)T {F (uk+1)+Q(uk+1−uk)} ≥ 0, ∀u ∈ Ω, (2.8)

where

Q =

(
rIn AT

0 sIm

)
is not symmetric.

It does not be the PPA form (1.27), and we can not expect its convergence.

26

The following example of linear programming indicates

the original PDHG (2.4) is not necessary convergent.

Consider a pair of the primal-dual linear programmingµ

(Primal)

min cTx

s. t. Ax = b

x ≥ 0.

(Dual)
max bT y

s. t. AT y ≤ c.

We take the following example

(P)

min x1 + 2x2

s. t. x1 + x2 = 1

x1, x2 ≥ 0.

(D)

max y

s. t.

[
1

1

]
y ≤

[
1

2

]

where A = [1, 1], b = 1, c =

[
1

2

]
and the vector x =

[
x1

x2

]
.

11
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The optimal solutions of this pair of linear programming are x∗ =

[
1

0

]
and y∗ = 1.

Note that its Lagrange function is

L(x, y) = cTx− yT (Ax− b) (2.9)

which defined on <2
+ ×<. (x∗, y∗) is the unique saddle point of the Lagrange function.

For the convex optimization problem min{θ(x) |Ax = b, x ∈ X},
its Lagrangian function is

L(x, y) = θ(x)− yT (Ax− b),

which defined on X × <m. Find the saddle point of the Lagrangian function is a special

min−max problem (2.1) whose θ1(x) = θ(x), θ2(y) = −bT y and Y = <m.

For solving the min-max problem (2.9), by using (2.4), the iterative formula is
{
xk+1 = max{(xk + 1

r
(AT yk − c)), 0},

yk+1 = yk − 1
s
(Axk+1 − b).

28

We use (x0
1, x

0
2; y0) = (0, 0; 0) as the start point. For this example, the method is not

convergent.

t(1,0;1)u∗

6

6
-
@
@
@
@
@@R

?�@
@
@

@
@@I

t

r

r r

r

rr(0,0;0)u0

u7
u1

u2 u3

u4u4

u5u6

Fig. 4.1 The sequence generated by

PDHG Method with r = s = 1
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2.2 Proximal Point Algorithm – CP-PPA

If we change the non-symmetric matrix Q to a symmetric matrix H such that

Q =

(
rIn AT

0 sIm

)
⇒ H =

(
rIn AT

A sIm

)
,

then the variational inequality (2.8) will become the following desirable form:

θ(u)−θ(uk+1)+(u−uk+1)T {F (uk+1)+H(uk+1 − uk)} ≥ 0, ∀u ∈ Ω.

For this purpose, we need only to change (2.7) in PDHG, namely,

θ2(y)− θ2(yk+1) + (y − yk+1)T {Axk+1 + s(yk+1 − yk)} ≥ 0, ∀ y ∈ Y.
to

θ2(y)−θ2(yk+1)+(y−yk+1)T {A[2xk+1−xk]+s(yk+1−yk)} ≥ 0, ∀ y ∈ Y.
(2.10)

θ2(y)−θ2(yk+1)+(y−yk+1)T {Axk+1+A(xk+1 − xk) + s(yk+1 − yk)} ≥ 0.

13
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Thus, for given (xk, yk), producing a proximal point (xk+1, yk+1) via (2.4a)

and (2.10) can be summarized as:

xk+1 = argmin
{

Φ(x, yk) +
r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (2.11a)

yk+1 = argmax
{

Φ
(
[2xk+1 − xk], y

)
− s

2

∥∥y − yk
∥∥2}

(2.11b)

By ignoring the constant term in the objective function, getting xk+1 from (2.11a)

is equivalent to obtaining xk+1 from

xk+1 = argmin
{
θ1(x) +

r

2

∥∥x−
[
xk +

1

r
AT yk

]∥∥2 ∣∣x ∈ X
}
.

The solution of (2.11b) is given by

yk+1 = argmin
{
θ2(y) +

s

2

∥∥y −
[
yk +

1

s
A(2xk+1 − xk)

]∥∥2 ∣∣ y ∈ Y
}
.

According to the assumption, there is no difficulty to solve (2.11a)-(2.11b).

32

In the case that rs > ‖ATA‖, the matrix

H =

(
rIn AT

A sIm

)
is positive definite.

The method (2.11) was first suggested by Chambolle and Pock [4]. A few months

later, by using the PPA interpretation, we have proved the convergence as

mentioned here [26]. In this sense, we call it CP-PPA.

Theorem 2.1 The sequence {uk = (xk, λk)} generated by the CP-PPA (2.11)

satisfies

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − ‖uk − uk+1‖2H . (2.12)

For the minimization problem min{θ(x) |Ax = b, x ∈ X},
the iterative scheme is

xk+1 = argmin
{
θ(x) +

r

2

∥∥x−
[
xk +

1

r
AT yk

]∥∥2 ∣∣x ∈ X
}
. (2.13a)

yk+1 = yk − 1

s

[
A(2xk+1 − xk)− b

]
. (2.13b)

14
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For solving the min-max problem (2.9), by using (2.11), the iterative formula is

{
xk+1 = max{(xk + 1

r (AT yk − c)), 0},
yk+1 = yk − 1

s [A(2xk+1 − xk)− b].

t
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Fig. 4.2 The sequence generated by
C-PPA Method with r = s = 1

u0 = (0, 0; 0)

u1 = (0, 0; 1)

u2 = (0, 0; 2)

u3 = (1, 0; 1)

u3 = u∗.
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Besides (2.11), (xk+1, yk+1) can be produced by using the dual-primal order:

yk+1 = argmax
{

Φ
(
xk, y

)
− s

2

∥∥y − yk
∥∥2}

(2.14a)

xk+1 = argmin
{

Φ(x, (2yk+1 − yk)) +
r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (2.14b)

By using the notation of u, F (u) and Ω in (2.3), we get uk+1 ∈ Ω and

θ(u)−θ(uk+1)+(u−uk+1)T {F (uk+1)+H(uk+1−uk)} ≥ 0, ∀u ∈ Ω,

where

H =

(
rIn −AT

−A sIm

)
.

Note that in the primal-dual order,

H =

(
rIn AT

A sIm

)
.

In the both cases, rs > ‖ATA‖, the matrix H is positive definite.
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Remark We use CP-PPA to solve linearly constrained convex optimization.

If the equality constraints Ax = b is changed to Ax ≥ b, namely,

min{θ(x) | Ax = b, x ∈ X} ⇒ min{θ(x) | Ax ≥ b, x ∈ X}.

In this case, the Lagrange multiplier y should be nonnegative. Ω = X × <m+ .

We need only to make a slight change in the algorithms.

In the primal-dual order (2.11b), it needs to change the update dual update form

yk+1 = λk− 1
s

(
A(2xk+1− xk)− b

)
⇒ yk+1 =

[
yk− 1

s

(
A(2xk+1− xk

)
− b]

]
+

In the dual-primal order (2.14a), it needs to change the update dual update form

yk+1 = yk− 1
s

(
Axk+1 − b

)
⇒ yk+1 =

[
yk− 1

s

(
Axk+1 − b

)]
+

16
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2.3 Simplicity recognition

Frame of VI is recognized by some Researcher in Image Science

Diagonal preconditioning for first order primal-dual algorithms
in convex optimization∗

Thomas Pock
Institute for Computer Graphics and Vision

Graz University of Technology
pock@icg.tugraz.at

Antonin Chambolle
CMAP & CNRS
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Abstract

In this paper we study preconditioning techniques for
the first-order primal-dual algorithm proposed in [5]. In
particular, we propose simple and easy to compute diago-
nal preconditioners for which convergence of the algorithm
is guaranteed without the need to compute any step size
parameters. As a by-product, we show that for a certain
instance of the preconditioning, the proposed algorithm is
equivalent to the old and widely unknown alternating step
method for monotropic programming [7]. We show numer-
ical results on general linear programming problems and
a few standard computer vision problems. In all examples,
the preconditioned algorithm significantly outperforms the
algorithm of [5].

1. Introduction
In [5, 8, 13] first-order primal-dual algorithms are stud-

ied to solve a certain class of convex optimization problems
with known saddle-point structure.

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) , (1)

where X and Y are finite-dimensional vector spaces
equipped with standard inner products 〈·, ·〉. K : X → Y
is a linear operator and G : X → R ∪ {∞} and F ∗ : Y →
R ∪ {∞} are convex functions with known structure.

The iterates of the algorithm studied in [5] to solve (1)
are very simple:
{
xk+1 =(I + τ∂G)−1(xk − τKT yk)

yk+1 =(I + σ∂F ∗)−1(yk + σK(xk+1 + θ(xk+1 − xk)))

(2)
They basically consist of alternating a gradient ascend in
the dual variable and a gradient descend in the primal

∗The first author acknowledges support from the Austrian Science Fund
(FWF) under the grant P22492-N23.

Figure 1. On problems with irregular structure, the proposed pre-
conditioned algorithm (P-PD) converges significantly faster than
the algorithm of [5] (PD).

variable. Additionally, the algorithm performs an over-
relaxation step in the primal variable. A fundamental as-
sumption of the algorithm is that the functions F ∗ and G
are of simple structure, meaning that the so-called proxim-
ity or resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1

have closed-form solutions or can be efficiently computed
with a high precision. Their exact definitions will be given
in Section 1.1. The parameters τ, σ > 0 are the primal and
dual step sizes and θ ∈ [0, 1] controls the amount of over-
relaxation in x. It is shown in [5] that the algorithm con-
verges as long as θ = 1 and the primal and dual step sizes
τ and σ are chosen such that τσL2 < 1, where L = ‖K‖
is the operator norm of K. It is further shown that a suit-
ably defined partial primal-dual gap of the average of the
sequence ((x0, y0), ..., (xk, yk)) vanishes with rate O(1/k)
for the complete class of problems covered by (1). For
problems with more regularity, the authors propose acceler-
ation schemes based on non-empirical choices on τ , σ and
θ. In particular they show that they can achieveO(1/k2) for
problems where G of F ∗ is uniformly convex and O(ωk),
ω < 1 for problems where both G and F ∗ are uniformly
convex. See [5] for more details.

A common feature of all numerical examples in [5] is
that the involved linear operators K have a simple struc-
ture which makes it very easy to estimate L. We observed
that for problems where the operator K has a more compli-

1

• T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

• A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem

with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
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The authors said
that the PPA expla-
nation greatly sim-
plifies the conver-
gence analysis

We think that on-
ly when the matrix
M in (6) is sym-
metric and positive
definite, the related
method is conver-
gent.

Otherwise, as we
have shown in the
previous example,
the method is not
necessarily conver-
gent

In the matrix M , the parameter θ = 0 can not guarantee the convergence.

For θ ∈ (0, 1), there is not proof for the convergence, it is still an Open Problem.
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dual variables into a vector y and all linear operators into a
global linear operator K. Then, applying the precondition-
ing techniques proposed in this paper leads to an algorithm
that is guaranteed to converge to the optimal solution with-
out the need to solve any inner optimization problems.

Figure 3 shows some results of standard minimal parti-
tioning and segmentation problems. We compared the orig-
inal approach solving inner optimization problems and us-
ing PD to P-PD applied to (27). We first precomputed the
optimal solution using a large number of iterations and then
recorded the time until the error is below a threshold of tol.
The timings are presented in Table 4. In all cases, the pro-
posed algorithm clearly outperforms the original approach
of [5].

PD P-PD Speedup
Synthetic (3 phases) 221.71s 75.65s 2.9
Synthetic (4 phases) 1392.02s 538.83s 2.6

Natural (8 phases) 592.85s 113.76s 5.2
Table 4. Comparison of the proposed algorithm on partitioning
problems.

4. Conclusion

In this paper we have proposed a simple precondition-
ing technique to improve the performance of the first-order
primal-dual algorithm proposed in [13, 5]. The proposed
diagonal preconditioners can be computed efficiently and
guarantee the convergence of the algorithm without the
need to estimate any step size parameters. In several nu-
merical experiments, we have shown that the proposed al-
gorithm significantly outperforms the algorithm in [5]. Fur-
thermore, on large scale linear programming problems, an
unoptimized implementation of the proposed algorithm eas-
ily outperforms a highly optimized interior point solver and
a GPU implementation of the proposed algorithm can eas-
ily compete with specialized combinatorial algorithms for
computing minimum cuts.

We believe that the proposed algorithm can become a
standard algorithm in computer vision since it can be ap-
plied to a large class of convex optimization problems aris-
ing in computer vision and has the potential for parallel
computing. Future work will mainly concentrate on the
development of more sophisticated preconditioners that are
different from diagonal matrices.
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Moreover, from the convexity of f and (4) it follows

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 ≥ f (x̂) + 〈∇ f (x̄), x − x̂
〉 − L f

2
‖x̂ − x̄‖2.

Combining this with the previous inequality, we arrive at

f (x) + g(x) + 1
τ

Dx (x, x̄) + L f

2
‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈
K (x̂ − x), ỹ

〉 + 1
τ

Dx (x̂, x̄) + 1
τ

Dx (x, x̂). (9)

In the same way:

h∗(y) + 1
σ

Dy(y, ȳ) ≥ h∗(ŷ) − 〈
K x̃, ŷ − y

〉 + 1
σ

Dy(ŷ, ȳ) + 1
σ

Dy(y, ŷ). (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8) �	.

3 Non-linear primal–dual algorithm

In this section we address the convergence rate of the non-linear primal–dual algorithm
shown in Algorithm 1:

Algorithm 1: O(1/N ) Non-linear primal–dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant L f of ∇ f , and Bregman
distance functions Dx and Dy .

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, 2xn+1 − xn, yn) (11)

The elegant interpretation in [16] shows that by writing the algorithm in this form
(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x =
‖·‖y = ‖·‖2, and Dx (x, x ′) = 1

2‖x − x ′‖2
2, Dy(y, y′) = 1

2‖y − y′‖2
2, then it is an

instance of the proximal point algorithm [27], up to the explicit term ∇ f (xn), since

(
K ∗ + ∂g

−K + ∂h∗
)

(zn+1) + Mτ,σ (zn+1 − zn) �
(−∇ f (xn)

0

)
,

where the variable z ∈ X ×Y represents the pair (x, y), and the matrix Mτ,σ is given
by

Mτ,σ =
( 1

τ
I −K ∗

−K 1
σ

I

)
, (12)

which is positive-definite as soon as τσ L2 < 1. A proof of convergence is easily
deduced. Moreover, since in our particular setting we never really use the machinery
of monotone operators, and rely only on the fact that we are studying a specific

123

A proof of convergence is easily
deduced.

The elegant interpretation in
in
y writing the algorithm in this form

♣ The authors mentioned, the elegant explanation in [16] (our paper) shows that

by writing the algorithm in (our suggested form), it can be regarded as

Proximal Point Algorithm, · · · , A proof of convergence is easily deduced.
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♣ Reference [16] is our paper published on SIAM J. Imaging Science, 2012.
Reference [17] shows the O(1/t) convergence rate of the alternating
direction method of multipliers, it published on SIAM J. Numerical Analysis,
2012.

We are showing these quotations to illustrate:

♣ By using the framework of proximal point algorithm for variational inequality,
the proof of convergence can be greatly simplified. This approach is regarded
a very simple yet powerful technique for analysing the optimization methods
(S. Becker, 2011, 2019).

♣ Only a simple and clear point of view can be quickly adopted by scholars in
the field of application and have some impact and valuable utility.
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In July 2017, one of my
colleagues from Math-
ematics Department of
Southern University of
Science and Technolo-
gy visited the UK. At
an academic confer-
ence he attended, the
first speaker mentioned
that the work is based
on the Proximal point
form proposed by us
(He and Yuan, 2012).

Seeing a slide show
about our contribution,
my colleague snapped
a picture and sent it to
me.

It shows that only sim-
ple and powerful ideas
can be easily spread
and accepted.
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2.4 Customized PPA – an extended version of PPA

In practical computation, instead of wk+1 = (xk+1, yk+1), we denote the output of

(2.11) and (2.14) by w̃k = (x̃k, ỹk). Then, similarly as (1.25), for such w̃k , we have

(w̃k − w∗)TH(wk − w̃k) ≥ 0,

and thus

(wk − w∗)TH(wk − w̃k) ≥ ‖wk − w̃k‖2H . (2.15)

In the extended PPA, the new iterate is given by

wk+1 = wk − γ(wk − w̃k), γ ∈ (0, 2). (2.16)

The method in this section is called Extended customized PPA (E-C-PPA). From (2.15) and

(2.16) follows immediately the following contraction inequality:

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − γ(2− γ)‖wk − w̃k‖2H . (2.17)

In order to see how to take a relaxed factor γ ∈ (0, 2) in (2.16), we define

wk+1(α) = wk − α(wk − w̃k), (2.18)
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as a step-size α dependent new iterate. It is natural to consider maximizing the

α-dependent profit function

ϑk(α) = ‖wk − w∗‖2H − ‖wk+1(α)− w∗‖2H . (2.19)

Using (8.12), we get

ϑk(α) = ‖wk − w∗‖2H − ‖wk − w∗ − α(wk − w̃k)‖2H
= 2α(wk − w∗)TH(wk − w̃k)− α2‖wk − w̃k‖2H . (2.20)

For any fixed solution point w∗, (A1.12) tell us that ϑk(α) is a quadratic function of α.

Because w∗ is unknown, it is impossible to get the maxmum point of ϑk(α). Fortunately,

using (2.15), we have

ϑk(α) ≥ 2α‖wk − w̃k‖2H − α2‖wk − w̃k‖2H = qk(α). (2.21)

The right hand side of the last inequality is defined by qk(α), which is a lower bound

function of ϑk(α) and quadratic. It is clear that qk(α) reaches its maximum at α∗k = 1.

Recall that ideal is to maximize the unknown quadratic profit function ϑk(α) (see (A1.12)),

and qk(α) is a lower bound function of ϑk(α).
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O α* γα*

q(α)

ϑ(α)

α

Fig. 3.3 Instruction for γ ∈ [1, 2)

We take a relaxed factor γ ∈ (0, 2), and use (2.16) to produce the new iterate. From

(2.19) and (8.1.1), the contraction inequality (2.17) follows immediately.

Thus, the Chambolle-Pock method is a special algorithm of (2.16) with γ = 1. In

other words, CP method is a classical customized PPA. In practical computation, we

suggest to use the extended customized PPA with γ ∈ [1.2, 1.8].
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2.5 Applications in scientific computation

2.5.1 Finding the nearest correlation matrix

min{1

2
‖X − C‖2F | diag(X) = e, X ∈ Sn+}, (2.22)

where e is a n-vector whose each element is equal 1.

The problem has the mathematical form (1.5) with ‖ATA‖ = 1.

We use y ∈ <n as the Lagrange multiplier for the linear equality constraint.

Applied Customized PPA to the problem (2.22)

For given (Xk, yk), produce the predictor (Xk+1, yk+1) by using (2.14):

1. Producing yk+1 by

yk+1 = yk − 1

s
(diag(Xk)− e).
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2. Finding Xk+1 which is the solution of the following minimization problem

min{1

2
‖X−C‖2F +

r

2
‖X− [Xk+

1

r
diag(2yk+1−yk)]‖2F |X ∈ Sn+}.

(2.23)

How to solve the subproblem (2.23) The problem (2.23) is equivalent to

min{1

2
‖X − 1

1 + r
[rXk + diag(2yk+1 − yk) + C]‖2F |X ∈ Sn+}.

The main computational load of each iteration is a SVD decomposition.

Numerical Tests To construct the test examples, we give the matrix C via:

C=rand(n,n); C=(C’+C)-ones(n,n) + eye(n)

In this way, C is symmetric, Cjj ∈ (0, 2), and Cij ∈ (−1, 1), for i 6= j.

Matlab code for Creating the test examples

clear; close all; n = 1000; tol=1e-5; r=2.0; s=1.01/r;

gamma=1.5; rand(’state’,0); C=rand(n,n); C=(C’+C)-ones(n,n) +

eye(n);
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Matlab code of the classical Customized PPA
%%% Classical PPA for calibrating correlation matrix %(1)

function PPAC(n,C,r,s,tol) %(2)

X=eye(n); y=zeros(n,1); tic; %% The initial iterate %(3)

stopc=1; k=0; %(4)

while (stopc>tol && k<=100) %% Beginning of an Iteration %(5)

if mod(k,20)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

X0=X; y0=y; k=k+1; %(7)

yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-yt; %(8)

A=(X0*r + C + diag(yt*2-y0))/(1+r); %(9)

[V,D]=eig(A); D=max(0,D); XT=(V*D)*V’; EX=X0-XT; %(10)

ex=max(max(abs(EX))); ey=max(abs(EY)); stopc=max(ex,ey); %(11)

X=XT; y=yt; %(12)

end; % End of an Iteration %(13)

toc; TB = max(abs(diag(X-eye(n)))); %(14)

fprintf(’ k=%4d epsm=%9.3e max|X_jj - 1|=%8.5f \n’,k,stopc,TB); %%

The SVD decomposition is performed by [V,D]=eig(A) in the line (10) of the above code.

The computational load of each decomposition [V,D]=eig(A) is about 9n3 flops.

Modifying the Classical PPA to Extended PPA, it needs only change the line (12)
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Matlab Code of the Extended Customized PPA
%%% Extended PPA for calibrating correlation matrix %(1)

function PPAE(n,C,r,s,tol,gamma) %(2)

X=eye(n); y=zeros(n,1); tic; %% The initial iterate %(3)

stopc=1; k=0; %(4)

while (stopc>tol && k<=100) %% Beginning of an Iteration %(5)

if mod(k,20)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

X0=X; y0=y; k=k+1; %(7)

yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-yt; %(8)

A=(X0*r + C + diag(yt*2-y0))/(1+r); %(9)

[V,D]=eig(A); D=max(0,D); XT=(V*D)*V’; EX=X0-XT; %(10)

ex=max(max(abs(EX))); ey=max(abs(EY)); stopc=max(ex,ey); %(11)

X=X0-EX*gamma; y=y0-EY*gamma; %(12)

end; % End of an Iteration %(13)

toc; TB = max(abs(diag(X-eye(n)))); %(14)

fprintf(’ k=%4d epsm=%9.3e max|X_jj - 1|=%8.5f \n’,k,stopc,TB); %%
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The difference of the above mentioned codes only in the line 12, the method is much

efficient by taking the relaxed factor γ = 1.5.

Numerical results of (2.22)–SVD by using Mexeig

n× n Matrix Classical PPA Extended PPA

n = No. It CPU Sec. No. It CPU Sec.

100 30 0.12 23 0.10
200 33 0.54 25 0.40
500 38 7.99 26 6.25
800 38 37.44 28 27.04
1000 45 94.32 30 55.32
2000 62 723.40 38 482.18

The extended PPA converges faster than the classical PPA.

It. No. of Extended PPA

It. No. of Classical PPA
≈ 65%.
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2.5.2 Application in matrix completion problem

(Problem) min{‖X‖∗ | XΩ = MΩ}. (2.24)

We let Y ∈ <n×n as the Lagrangian multiplier to the constraints XΩ = MΩ.

For given (Xk, Y k), applying (2.14) to produce (Xk+1, Y k+1):

1. Producing Y k+1 by

Y k+1
Ω = Y kΩ −

1

s
(Xk

Ω −MΩ). (2.25)

2. Finding Xk+1 by

Xk+1 = arg min
{
‖X‖∗ +

r

2

∥∥X −
[
Xk +

1

r
(2Y k+1

Ω − Y kΩ )
]∥∥2

F

}
.

(2.26)

Then, the new iterate is given by

Xk+1 := Xk − γ(Xk −Xk+1), Y k+1 := Y k − γ(Y k − Y k+1).
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Test examples The test examples is taken from

� J. F. Cai, E. J. Candès and Z. W. Shen, A singular value thresholding algorithm

for matrix completion, SIAM J. Optim. 20, 1956-1982, 2010.

Code for Creating the test examples of Matrix Completion

%% Creating the test examples of the matrix Completion problem %(1)

clear all; clc %(2)

maxIt=100; tol = 1e-4; %(3)

r=0.005; s=1.01/r; gamma=1.5; %(4)

n=200; ra = 10; oversampling = 5; %(5)

% n=1000; ra=100; oversampling = 3; %% Iteration No. 31 %(6)

% n=1000; ra=50; oversampling = 4; %% Iteration No. 36 %(7)

% n=1000; ra=10; oversampling = 6; %% Iteration No. 78 %(8)

%% Generating the test problem %(9)

rs = randseed; randn(’state’,rs); %(10)

M=randn(n,ra)*randn(ra,n); %% The matrix will be completed %(11)

df =ra*(n*2-ra); %% The freedom of the matrix %(12)

mo=oversampling; %(13)

m =min(mo*df,round(.99*n*n)); %% No. of the known elements %(14)

Omega= randsample(nˆ2,m); %% Define the subset Omega %(15)

fprintf(’Matrix: n=%4d Rank(M)=%3d Oversampling=%2d \n’,n,ra,mo);%(16)
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Code: Extended Customized PPA for Matrix Completion Problem

function PPAE(n,r,s,M,Omega,maxIt,tol,gamma) % Ititial Process %%(1)

X=zeros(n); Y=zeros(n); YT=zeros(n); %(2)

nM0=norm(M(Omega),’fro’); eps=1; VioKKT=1; k=0; tic; %(3)

%% Minimum nuclear norm solution by PPA method %(4)

while (eps > tol && k<= maxIt) %(5)

if mod(k,5)==0 %(6)

fprintf(’It=%3d |X-M|/|M|=%9.2e VioKKT=%9.2e\n’,k,eps,VioKKT); end;%(7)

k=k+1; X0=X; Y0=Y; %(8)

YT(Omega)=Y0(Omega)-(X0(Omega)-M(Omega))/s; EY=Y-YT; %(9)

A = X0 + (YT*2-Y0)/r; [U,D,V]=svd(A,0); %(10)

D=D-eye(n)/r; D=max(D,0); XT=(U*D)*V’; EX=X-XT; %(11)

DXM=XT(Omega)-M(Omega); eps = norm(DXM,’fro’)/nM0; %(12)

VioKKT = max( max(max(abs(EX)))*r, max(max(abs(EY))) ); %(13)

if (eps <= tol) gamma=1; end; %(14)

X = X0 - EX*gamma; %(15)

Y(Omega) = Y0(Omega) - EY(Omega)*gamma; %(16)

end; %(17)

fprintf(’It=%3d |X-M|/|M|=%9.2e Vi0KKT=%9.2e \n’,k,eps,VioKKT); %(18)

RelEr=norm((X-M),’fro’)/norm(M,’fro’); toc; %(19)

fprintf(’ Relative error = %9.2e Rank(X)=%3d \n’,RelEr,rank(X)); %(20)

fprintf(’ Violation of KKT Condition = %9.2e \n’,VioKKT); %(21)

54Numerical Results: using SVD in Matlab

Unknown n× n matrix M Computational Results

n rank(ra) m/dra m/n2 #iters times(Sec.) relative error

1000 10 6 0.12 76 841.59 9.38E-5
1000 50 4 0.39 37 406.24 1.21E-4
1000 100 3 0.58 31 362.58 1.50E-4

Numerical Results: Using SVD in PROPACK

Unknown n× n matrix M Computational Results

n rank(ra) m/dra m/n2 #iters times(Sec.) relative error

1000 10 6 0.12 76 30.99 9.30E-5
1000 50 4 0.39 36 40.25 1.29E-4
1000 100 3 0.58 30 42.45 1.50E-4

♣ The paper by Cai et. al is the first publication in SIAM J. Opti. for matrix completion

problem. For the same accuracy, the iteration numbers are listed in the last column of the

above table (See the first 3 examples in Table 5.1 of [2], Page. 1974).

♣ The reader may find, for the two examples in in §2.4, the constrained matrix A is a

projection matrix and thus ‖ATA‖ = 1, thus we take rs = 1.01. However, we take

r = 2 an r = 1/200 in §2.4.1 and §2.4.2, respectively. r is problems-dependent.
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3 From augmented Lagrangian method to ADMM
For the primal-dual methods and customized PPA in the last section, we assume that the

subproblem min{θ(x) +
r

2
‖x− a‖2 |x ∈ X} is simple. In this this section, the

mathematical form of the sub-problems of the proposed methods is

min{θ(x) +
β

2
‖Ax− p‖2 |x ∈ X}, (3.1)

where β > 0, and p is a given vector. In comparison with the subproblem in the last

section, the subproblem (3.1) is a little bit difficult. However, we still assume its solution has

a closed-form representation or it can be efficiently solved up to a high precision.

3.1 Augmented Lagrangian Method

We consider the convex optimization (1.5), namely

min{θ(u) | Au = b, u ∈ U}.

Its augmented Lagrangian function is

Lβ(u, λ) = θ(u)− λT (Au− b) +
β

2
‖Au− b‖2,
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where the additional quadratic term is the penalty for the linear constraintsAu = b. The

k-th iteration of the Augmented Lagrangian Method [28, 32] begins with a given λk ,

obtain wk+1 = (uk+1, λk+1) via

(ALM)

{
uk+1 = arg min

{
Lβ(u, λk)

∣∣ u ∈ U
}
, (3.2a)

λk+1 = λk − β(Auk+1 − b). (3.2b)

This is equivalent to

{
uk+1 = arg min

{
L(u, λk) + β

2
‖Au− b‖2

∣∣ u ∈ U
}
,

λk+1 = arg max
{
L(xk+1, λ)− 1

2β
‖λ− λk‖2

∣∣ λ ∈ <m
}
.

where L(u, λ) = θ(u)− λT (Au− b) is the usual Lagrangian function. In (3.2), uk+1

is only a computational result of (3.2a) from given λk , it is called the intermediate variable.
In order to start the k-th iteration of ALM, we need only to have λk and thus we call it as
the essential variable. The optimal condition can be written as wk+1 ∈ Ω and



θ(u)− θ(uk+1) + (u− uk+1)T {−ATλk + βAT (Auk+1 − b)} ≥ 0, ∀u ∈ U ,

(λ− λk+1)T {(Auk+1 − b) + 1
β

(λk+1 − λk)} ≥ 0, ∀λ ∈ <m.
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The above relations can be written as

θ(u)− θ(uk+1) +


u− u

k+1

λ− λk+1



T
−A

Tλk+1

Auk+1 − b




≥ (λ− λk+1)T
1

β
(λk − λk+1), ∀w ∈ Ω. (3.3)

Setting w = w∗ in (3.3) and using the notations in (1.6), we get

(λk+1 − λ∗)T (λk − λk+1) ≥ β{θ(uk+1)− θ(u∗) + (wk+1 −w∗)TF (wk+1)}.

By using the monotonicity of F and the optimality of w∗, it follows that

θ(uk+1)− θ(u∗) + (wk+1 − w∗)TF (wk+1)

≥ θ(uk+1)− θ(u∗) + (wk+1 − w∗)TF (w∗) ≥ 0.

Thus, we have

(λk+1 − λ∗)T (λk − λk+1) ≥ 0. (3.4)

By using Lemma 1.2, we obtain

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − ‖λk − λk+1‖2. (3.5)
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The above inequality is the key for the convergence proof of the Augmented Lagrangian

Method.

3.2 Alternating direction method of multipliers

We consider the following structured constrained convex optimization problem

min {θ1(x) + θ2(y) |Ax+By = b, x ∈ X , y ∈ Y} (3.6)

where θ1(x) : <n1 → <, θ2(y) : <n2 → < are convex functions (but not necessary

smooth), A ∈ <m×n1 , B ∈ <m×n2 and b ∈ <m, X ⊂ <n1 , Y ⊂ <n2 are given

closed convex sets.

Let λ be the Lagrangian multiplier for the linear constraints Ax+By = b in (3.6), the

Lagrangian function of this problem is

L[2](x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b),

which is defined onX ×Y ×<m. Let (x∗, y∗, λ∗) be an saddle point of the Lagrangian
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function, then (x∗, y∗, λ∗) ∈ X × Y × <m and it satisfies




θ1(x)− θ1(x∗) + (x− x∗)T (−ATλ∗) ≥ 0, ∀x ∈ X
θ2(y)− θ2(y∗) + (y − y∗)T (−BTλ∗) ≥ 0, ∀y ∈ Y

(λ− λ∗)T (Ax∗ +By∗ − b) ≥ 0, ∀λ ∈ <m
(3.7)

Note that these first order optimal conditions (3.7) can be written in a compact form such as

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (3.8a)

where

u =


 x

y


 , w =




x

y

λ


 , F (w) =




−ATλ
−BTλ

Ax+By − b


 (3.8b)

and

θ(u) = θ1(x) + θ2(y) and Ω = X × Y × <m, (3.8c)

Note that the mapping F is monotone. We use Ω∗ to denote the solution set of the

variational inequality (3.8).
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The augmented Lagrange Function of (3.6) is

L[2]
β (x, y, λ)=L(x, y, λ) +

β

2
‖Ax+By − b‖2

=θ1(x) + θ2(y)− λT(Ax+By − b) +
β

2
‖Ax+By − b‖2. (3.9)

Applying ALM (3.2) to the structured Convex Optimization problem (3.6)

For given λk, uk+1 = (xk+1, yk+1) is the solution of the following problem

 xk+1

yk+1


 = Argmin




θ1(x) + θ2(y)− (λk)T (Ax+By − b)

+β
2
‖Ax+By − b‖2

∣∣∣∣∣
x ∈ X
y ∈ Y



 (3.10)

The new iterate λk+1 = λk − β(Axk+1 +Byk+1 − b). (3.11)

Convergence ‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − ‖λk − λk+1‖2.

Shortcoming The structure property is not used !
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To overcome the shortcoming of the ALM for the problem (3.6), we use the alternating

direction method of multipliers. The main idea is splitting the subproblem (3.10) in two parts

and only the x-part is the intermediate variable. The iteration begins with v0 = (y0, λ0).

Applied ADMM to the structured COP: (yk, λk)⇒ (yk+1, λk+1)

First, for given (yk, λk), xk+1 is the solution of the following problem

xk+1 = Argmin

{
θ1(x)− (λk)T (Ax+Byk − b)

+ β
2
‖Ax+Byk − b‖2

∣∣∣∣∣x ∈ X
}

(3.12a)

Use λk and the obtained xk+1, yk+1 is the solution of the following problem

yk+1 = Argmin

{
θ2(y)− (λk)T (Axk+1 +By − b)

+ β
2
‖Axk+1 +By − b‖2

∣∣∣∣∣y ∈ Y
}

(3.12b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (3.12c)

Advantages The sub-problems (3.12a) and (3.12b) are separately solved one by one.
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Remark Ignoring the constant term in the objective function, the sub-problems (3.12a)

and (3.12b) is equivalent to

xk+1 = Argmin
{
θ1(x) + β

2
‖(Ax+Byk − b)− 1

β
λk‖2

∣∣x ∈ X
}

(3.13a)

and

yk+1 =Argmin
{
θ2(y) + β

2
‖(Axk+1 +By − b)− 1

β
λk‖2

∣∣y ∈ Y
}

(3.13b)

respectively. Note that the equation (3.12c) can be written as

(λ− λk+1){(Axk+1 +Byk+1 − b) + 1
β

(λk+1 − λk)} ≥ 0, ∀λ ∈ <m. (3.13c)

Notice that the sub-problems (3.13a) and (3.13b) are the type of

xk+1 = Argmin
{
θ1(x) + β

2
‖Ax− pk‖2

∣∣x ∈ X
}

and

yk+1 = Argmin
{
θ2(y) + β

2
‖By − qk‖2

∣∣y ∈ Y
}
,

respectively.
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Analysis Note that the solution of (3.12a) and (3.12b) satisfies

xk+1 ∈ X , θ1(x)− θ1(xk+1) + (x− xk+1)T

{
−ATλk + βAT

(
Axk+1 +Byk − b

)}
≥ 0, ∀x ∈ X

(3.14a)

and

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T

{
−BTλk+βBT

(
Axk+1+Byk+1−b

)}
≥ 0, ∀ y ∈ Y,

(3.14b)

respectively. Substituting λk+1 (see (3.12c)) in (3.14) (eliminating λk in (3.14)), we get

xk+1 ∈ X , θ1(x)− θ1(xk+1) + (x− xk+1)T

{
−ATλk+1 + βATB(yk − yk+1)

}
≥ 0, ∀x ∈ X ,

(3.15a)

and

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T
{
−BTλk+1} ≥ 0, ∀ y ∈ Y.

(3.15b)

64

The compact form of (3.15) is uk+1 = (xk+1, yk+1) ∈ X × Y and

θ(u)−θ(uk+1)+


x− x

k+1

y − yk+1



T



−A

Tλk+1

−BTλk+1


+β


A

TB

0


(yk − yk+1)



 ≥ 0,

(3.16)

for all (x, y) ∈ X × Y . We rewrite the about variational inequality in our desirable form

θ(u)− θ(uk+1) +


x− x

k+1

y − yk+1



T



−A

Tλk+1

−BTλk+1


+β


A

TB

BTB


(yk − yk+1)

+


0 0

0 βBTB




 xk+1 − xk

yk+1 − yk





 ≥ 0, ∀ (x, y) ∈ X × Y.

Notice that (3.13c) can be written as

λk+1 ∈ <m, (λ−λk+1)T {(Axk+1+Byk+1−b)+ 1

β
(λk+1−λk)} ≥ 0, ∀λ ∈ <m.
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Combining the last two inequalities, we have wk+1 ∈ Ω and

θ(u)−θ(uk+1)+



x− xk+1

y − yk+1

λ− λk+1




T






−ATλk+1

−BTλk+1

Axk+1+Byk+1− b


+β



AT

BT

0


B(yk−yk+1)

+




0 0

βBTB 0

0 1
β
Im





 yk+1 − yk

λk+1 − λk







≥ 0, ∀w ∈ Ω. (3.17)

For convenience we use the notations

v =

(
y

λ

)
and V∗ = {(y∗, λ∗) | (x∗, y∗, λ∗) ∈ Ω∗}.

Then, we get the following lemma:

Lemma 3.1 Let the sequence {wk+1 = (xk+1, yk+1, λk+1)} ∈ Ω be generated by

(3.12). Then, we have

(vk+1 − v∗)TH(vk − vk+1) ≥ (λk − λk+1)TB(yk − yk+1). (3.18)
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where

H =

(
βBTB 0

0 1
β
Im

)
. (3.19)

Proof. First, using the notation of the matrix H , (3.17) can be rewritten as

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)TF (w)

+ β

(
x− xk+1

y − yk+1

)T(
AT

BT

)
B(yk − yk+1)

≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω. (3.20)

Setting w = w∗ in (3.20), we get

(vk+1 − v∗)TH(vk − vk+1)

≥ β

(
xk+1 − x∗

yk+1 − y∗

)T(
AT

BT

)
B(yk − yk+1)

+{θ(uk+1)− θ(u∗) + (wk+1 − w∗)TF (wk+1)}, ∀w∗ ∈ Ω∗.(3.21)
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By usingAx∗ +By∗ = b and β(Axk+1 +Byk+1 − b) = λk − λk+1 (see (3.12c)),

we have

β

(
xk+1 − x∗

yk+1 − y∗

)T(
AT

BT

)
B(yk − yk+1)

= β{(Axk+1 +Byk+1)− (Ax∗ +By∗)}TB(yk − yk+1)

= (λk − λk+1)TB(yk − yk+1). (3.22)

Since (wk+1 − w∗)TF (wk+1) = (wk+1 − w∗)TF (w∗) and w∗ is the optimal

solution, it follows that

θ(uk+1)−θ(u∗) + (wk+1 − w∗)TF (wk+1) ≥ 0.

Substituting (3.22) and the last inequality in (3.20), the assertion of this lemma follows

immediately. 2

Lemma 3.2 Let the sequence {wk = (xk, yk, λk)} ∈ Ω be generated by (3.12).

Then, we have

(λk − λk+1)TB(yk − yk+1) ≥ 0. (3.23)
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Proof. Because (3.15b) is true for the k-th iteration and the previous iteration, we have

θ2(y)− θ2(yk+1) + (y − yk+1)T
{
−BTλk+1} ≥ 0, ∀ y ∈ Y, (3.24)

and

θ2(y)− θ2(yk) + (y − yk)T
{
−BTλk} ≥ 0, ∀ y ∈ Y, (3.25)

Setting y = yk in (3.24) and y = yk+1 in (3.25), respectively, and then adding the two

resulting inequalities, we get the assertion (3.23) immediately. 2

Substituting (3.23) in (3.18), we get

(vk+1 − v∗)TH(vk − vk+1) ≥ 0, ∀ v∗ ∈ V∗. (3.26)

Using the above inequality, as from (3.4) to (3.5) in Section 3.1, we have the following

theorem, which is the key for the proof of the convergence of ADMM.

Theorem 3.1 Let the sequence {wk = (xk, yk, λk)} ∈ Ω be generated by (3.12).

Then, we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H , ∀ v∗ ∈ V∗. (3.27)
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How to choose the parameter β. The efficiency of ADMM is heavily dependent on the

parameter β in (3.12). We discuss how to choose a suitable β in the practical computation.

Note that if βATB(yk − yk+1) = 0, then it follows from (3.16)

θ(u)−θ(uk+1)+


x− x

k+1

y − yk+1



T
−A

Tλk+1

−BTλk+1


 ≥ 0, ∀(x, y) ∈ X ×Y. (3.28)

In this case, if additionally Axk+1 +Byk+1 − b = 0, then we have





θ1(x)− θ1(xk+1) + (x− xk+1)T (−ATλk+1) ≥ 0, ∀x ∈ X
θ2(y)− θ2(yk+1) + (y − yk+1)T (−BTλk+1) ≥ 0, ∀y ∈ Y

(λ− λk+1)T (Axk+1 +Byk+1 − b) ≥ 0, ∀λ ∈ <m

and consequently (xk+1, yk+1, λk+1) is a solution of the variational inequality (3.8).

In other words, (xk+1, yk+1, λk+1) is not a solution of (3.8) because

βATB(yk − yk+1) 6= 0 and/or Axk+1 +Byk+1 − b 6= 0.
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We call

‖βATB(yk − yk+1)‖ and ‖Axk+1 +Byk+1 − b‖
the primal-residual and the dual-residual, respectively. It seems that we should balance the

primal and the dual residuals dynamically. If

µ‖βATB(yk − yk+1)‖ < ‖Axk+1 +Byk+1 − b‖ with a µ > 1,

it means that the dual residual is too large and thus we should enlarge the parameter β in

the augmented Lagrangian function (3.9). Otherwise, we should reduce the parameter β.

A simple scheme that often works well is (see, e.g., [24]):

βk+1 =





βk ∗ τ, if µ‖βATB(yk − yk+1)‖ < ‖Axk+1 +Byk+1 − b‖;
βk/τ, if ‖βATB(yk − yk+1)‖ > µ‖Axk+1 +Byk+1 − b‖;
βk, otherwise.

where µ > 1, τ > 1 are parameters. Typical choices might be µ = 10 and τ = 2. The

idea behind this penalty parameter update is to try to keep the primal and dual residual

norms within a factor of µ of one another as they both converge to zero. This self adaptive

adjusting rule has been used by S. Boyd’s group [1] and in their Optimization Solver [12].
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3.3 Linearized ADMM

The augmented Lagrangian Function of the problem (3.6) is

L[2]
β (x, y, λ) = θ1(x) + θ2(y)−λT (Ax+By− b) +

β

2
‖Ax+By− b‖2. (3.29)

Solving the problem (3.6) by using ADMM, the k-th iteration begins with given (yk, λk), it

offers the new iterate (yk+1, λk+1) via

(ADMM)





xk+1 = arg min
{
L[2]
β (x, yk, λk)

∣∣ x ∈ X
}
, (3.30a)

yk+1 = arg min
{
L[2]
β (xk+1, y, λk)

∣∣ y ∈ Y
}
, (3.30b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (3.30c)

In optimization problem, the solution is invariant by changing the constant term in the

objective function. Thus, by using the augmented Lagrangian function,

yk+1 = arg min
{
L[2]
β (xk+1, y, λk)

∣∣ y ∈ Y
}

= arg min
{
θ2(y)− yTBTλk +

β

2
‖Axk+1 +By − b‖2

∣∣ y ∈ Y}.
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Thus, by denoting qk = b−Axk+1 + 1
β
λk , the solution of (3.12b) is given by

min{θ2(y) +
β

2
‖By − qk‖2 | y ∈ Y}. (3.31)

In some practical applications, because of the structure of the matrix B, the subproblem

(3.31) is not so easy to be solved. In this case, it is necessary to use the linearized version

of the ADMM.

Notice that the Taylor expansion of the quadratic term of (3.30b), namely,

β

2
‖Axk+1 +By − b‖2 =

β

2
‖B(y − yk) + (Axk+1 +Byk − b)‖2

=
β

2
‖B(y − yk)‖2 + β(y − yk)TBT (Axk+1 +Byk − b)

+
β

2
‖Axk+1 +Byk − b‖2
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Changing the constant term in the objective function of (3.30b) accordingly, we have

yk+1 = arg min
{
L[2]
β (xk+1, y, λk)

∣∣ y ∈ Y}

= arg min
{
θ2(y)− yTBTλk +

β

2
‖Axk+1 +By − b‖2

∣∣ y ∈ Y
}

= arg min





θ2(y)− yTBTλk + βyTBT (Axk+1 +Byk − b)
+β

2
‖B(y − yk)‖2

∣∣∣∣ y ∈ Y



 .

So-called linearized version of ADMM, we remove the unfavorable term
β

2
‖B(y − yk)‖2

in the objective function, and add the term
s

2
‖y − yk‖2.

Strictly speaking, it should be a ”linearization” plus ”regularization” method. It can also be

interpreted as:

The term
β

2
‖B(y − yk)‖2 is replaced with

s

2
‖y − yk‖2.

In other words, it is equivalent to adding the term

1

2
‖y − yk‖2DB (with DB = sIn2 − βBTB) (3.32)
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to the objective function of (3.30b), we get

yk+1 = arg min
{
L[2]
β (xk+1, y, λk) +

1

2
‖y − yk‖2DB

∣∣ y ∈ Y}

= arg min





θ2(y)− yTBTλk + βyTBT (Axk+1 +Byk − b)
+
s

2
‖y − yk‖2

∣∣∣∣ y ∈ Y





= arg min
{
θ2(y) +

s

2

∥∥y − dk
∥∥2 ∣∣ y ∈ Y

}
, (3.33)

where

dk = yk − 1

s
BT
[
β(Axk+1 +Byk − b)− λk

]
.

By using such strategy, the sub-problems of ADMM is simplified. The linearized version of

ADMM are applied successfully in scientific computing [29, 33, 36, 37]. The following

analysis is based on the fact that the sub-problems (3.12a) and

min{θ2(y) +
s

2
‖y − dk‖2 | y ∈ Y}

are easy to be solved.

Linearized ADMM. For solving the problem (3.6), the k-th iteration of the linearized

ADMM begins with given vk = (yk, λk), produces the wk+1 = (xk+1, yk+1, λk+1)
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via the following procedure:




xk+1 = arg min
{
L[2]
β (x, yk, λk)

∣∣ x ∈ X
}
, (3.34a)

yk+1 = arg min
{
L[2]
β (xk+1, y, λk) +

1

2
‖y − yk‖2DB

∣∣ y ∈ Y
}
, (3.34b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (3.34c)

where DB is defined by (3.32).

First, using the optimality of the sub-problems of (3.34), we prove the following lemma as

the base of convergence.

Lemma 3.3 Let {wk} be the sequence generated by Linearized ADMM (3.34) for the

problem (3.6). Then, we have

wk+1 ∈ Ω, θ(u)−θ(uk+1) + (w − wk+1)TF (w)

+ β(x− xk+1)TAT (Byk −Byk+1)

≥ (y − yk+1)TDB(yk − yk+1)

+
1

β
(λ− λk+1)T (λk − λk+1), ∀w ∈ Ω. (3.35)
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Proof. For the x-subproblem in (3.34a), by using Lemma 1.1, we have

xk+1 ∈ X , θ1(x)− θ1(xk+1)

+ (x− xk+1)T {−ATλk + βAT (Axk+1 +Byk − b)}
≥ 0, ∀x ∈ X .

By using the multipliers update form in (3.34), λk+1 = λk − β(Axk+1 +Byk+1 − b),

the above inequality can be written as

xk+1 ∈ X , θ1(x)− θ1(xk+1)

+ (x− xk+1)T {−ATλk+1 + βATB(yk − yk+1)}
≥ 0, ∀x ∈ X . (3.36)

For the y-subproblem in (3.34b), by using Lemma 1.1, we have

yk+1 ∈ Y, θ2(y)− θ2(yk+1)

+ (y − yk+1)T {−BTλk + βBT (Axk+1 +Byk+1 − b)}
+ (y − yk+1)TDB(yk+1 − yk) ≥ 0, ∀ y ∈ Y.
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Again, by using the update form λk+1 = λk − β(Axk+1 +Byk+1 − b), the above

inequality can be written as

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T {−BTλk+1}

≥ (y − yk+1)TDB(yk − yk+1)}, ∀ y ∈ Y. (3.37)

Notice that the update form for the multipliers, λk+1 = λk − β(Axk+1 +Byk+1 − b),

can be written as λk+1 ∈ <m and

(λ−λk+1)T {(Axk+1 +Byk+1− b) +
1

β
(λk+1−λk)} ≥ 0, ∀λ ∈ <m. (3.38)

Adding (3.36), (3.37) and (3.38), and using the notation in (3.8), we get

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)TF (wk+1)

+ β(x− xk+1)TAT (Byk −Byk+1)

≥ (y − yk+1)TDB(yk − yk+1)

+
1

β
(λ− λk+1)T (λk − λk+1), ∀w ∈ Ω. (3.39)
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For the term (w − wk+1)TF (wk+1) in the left side of (3.39), by using (1.8), we have

(w − wk+1)TF (wk+1) = (w − wk+1)TF (w).

The assertion (3.35) is proved. 2

This lemma is the base for the convergence analysis of the linearized ADMM.

The contractive property of the sequence {wk} by Linearized ADMM (3.34)

In the following we will prove, for any w∗ ∈ Ω∗, the sequence

{‖vk+1 − v∗‖G + ‖yk − yk+1‖2DB}

is monotonically decreasing. For this purpose§we prove some lemmas.

Lemma 3.4 Let {wk} be the sequence generated by Linearized ADMM (3.34) for the
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problem (3.6). Then, we have

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)TF (w)

+ β


 x− xk+1

y − yk+1



T 
 AT

BT


B(yk − yk+1)

≥ (v − vk+1)TG(vk − vk+1), ∀w ∈ Ω, (3.40)

where G is given by

G =


 DB + βBTB 0

0 1
β
I


 . (3.41)

.

Proof. Adding (y − yk+1)TβBTB(yk − yk+1) to the both sides of (3.35) in Lemma

3.3, and using the notation of the matrix G, we obtain (3.40) immediately and the lemma is

proved. 2

Lemma 3.5 Let {wk} be the sequence generated by Linearized ADMM (3.34) for the
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problem (3.6). Then, we have

(vk+1−v∗)TG(vk−vk+1) ≥ (λk−λk+1)TB(yk−yk+1), ∀w∗ ∈ Ω∗. (3.42)

Proof. Setting the w ∈ Ω in (3.40) by any w∗ ∈ Ω∗, we obtain

(vk+1 − v∗)TG(vk − vk+1)

≥ θ(uk+1)− θ(u∗) + (wk+1 − w∗)TF (w∗)

+ β


 xk+1 − x∗

yk+1 − y∗



T 
 AT

BT


B(yk − yk+1). (3.43)

According to the optimality, a part of the terms in the right hand side of the above inequality,

θ(uk+1)− θ(u∗) + (wk+1 − w∗)TF (w∗) ≥ 0.

Using Ax∗ +By∗ = b and λk − λk+1 = β(Axk+1 +Byk+1 − b) (see (3.34c)) to
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deal the last term in the right hand side of (3.43) , it follows that

β


 xk+1 − x∗

yk+1 − y∗



T 
 AT

BT


B(yk − yk+1)

= β[(Axk+1 −Ax∗) + (Byk+1 −By∗)]TB(yk − yk+1)

= (λk − λk+1)TB(yk − yk+1).

The lemma is proved. 2

Lemma 3.6 Let {wk} be the sequence generated by Linearized ADMM (3.34) for the

problem (3.6). Then, we have

(λk − λk+1)TB(yk − yk+1) ≥ 1

2
‖yk − yk+1‖2DB −

1

2
‖yk−1 − yk‖2DB . (3.44)

Proof. First, (3.37) represents

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T

{−BTλk+1 +DB(yk+1 − yk)} ≥ 0, ∀ y ∈ Y. (3.45)

82

Setting k in (3.45) by k − 1, we have

yk ∈ Y, θ2(y)− θ2(yk) + (y − yk)T

{−BTλk +DB(yk − yk−1)} ≥ 0, ∀ y ∈ Y. (3.46)

Setting the y in (3.45) and (3.46) by yk and yk+1, respectively, and adding them, we get

(yk − yk+1)T
{
BT (λk − λk+1) +DB [(yk+1 − yk)− (yk − yk−1)]

}
≥ 0.

From the above inequality we get

(yk− yk+1)TBT (λk−λk+1) ≥ (yk− yk+1)TDB [(yk− yk+1)− (yk−1− yk)].

Using the Cauchy-Schwarz inequality for the right hand side term of the above inequality,

we get (3.44) and the lemma is proved. 2

By using Lemma 3.5 and Lemma 3.6, we can prove the following convergence theorem.
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Theorem 3.2 Let {wk} be the sequence generated by Linearized ADMM (3.34) for the

problem (3.6). Then, we have
(
‖vk+1 − v∗‖2G + ‖yk − yk+1‖2DB

)

≤
(
‖vk − v∗‖2G+‖yk−1 − yk‖2DB

)
−‖vk − vk+1‖2G, ∀w∗∈Ω∗, (3.47)

where G is given by (3.41).

Proof. From Lemma 3.5 and Lemma 3.6, it follows that

(vk+1−v∗)TG(vk−vk+1) ≥ 1

2
‖yk−yk+1‖2DB−

1

2
‖yk−1−yk‖2DB , ∀w

∗ ∈ Ω∗.

Using the above inequality, for any w∗ ∈ Ω∗, we get

‖vk − v∗‖2G = ‖(vk+1 − v∗) + (vk − vk+1)‖2G
≥ ‖vk+1 − v∗‖2G + ‖vk − vk+1‖2G + 2(vk+1 − v∗)TG(vk − vk+1)

≥ ‖vk+1 − v∗‖2G + ‖vk − vk+1‖2G
+ ‖yk − yk+1‖2DB − ‖y

k−1 − yk‖2DB .

The assertion of the Theorem 3.2 is proved. 2
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Optimal linearized ADMM – Main result in OO6228

In the subproblem of the Linearized ADMM, namely (3.34b), in order to ensure

the convergence, it was required that

DB = sIn2 − βBTB and s > β‖BTB‖. (3.48)

It is well known that the large parameter s will lead a slow convergence.

Recent Advance in : Bingsheng He, Feng Ma, Xiaoming Yuan:

Optimally linearizing the alternating direction method of multipliers for convex

programming, Comput. Optim. Appl. 75 (2020), 361-388.

We have proved: For the matrix DB in (3.34b) with form (3.48)

• if s > 3
4β‖BTB‖, the method is still convergent;

• if s < 3
4β‖BTB‖, there is divergent example.
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4 Splitting Methods in a Unified Framework

We study the algorithms using the guidance of variational inequality. Similarly as described

in (1.7), together with the Lagrangian multipliers, the optimal condition of the linearly

constrained convex optimization is resulted in a variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (4.1)

The analysis can be fund in [17] (Sections 4 and 5 therin). In order to illustrate the unified

framework, let us restudy the augmented Lagrangian method.

4.1 Extended Augmented Lagrangian Method

For the convex optimization (1.5), namely

min{θ(x) |Ax = b, x ∈ X}.

If we denote the output of (3.2) by w̃k = (x̃k, λ̃k), then the optimal condition can be
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written as w̃k ∈ Ω and



θ(x)− θ(x̃k) + (x− x̃k)T {−ATλk + βAT (Ax̃k − b)} ≥ 0, ∀x ∈ X ,

(λ− λ̃k)T {(Ax̃k − b) + 1
β

(λ̃k − λk)} ≥ 0, ∀λ ∈ <m.
The above relation can be written as

θ(x)− θ(x̃k) +


 x− x̃k

λ− λ̃k



T
 −A

T λ̃k

Ax̃k − b


 ≥ (λ− λ̃k)T

1

β
(λk− λ̃k), ∀w ∈ Ω.

(4.2a)

In the classical augmented Lagrangian method, λk+1 = λ̃k . In practice, we can use

relaxation techniques and offer the new iterate by

λk+1 = λk − α(λk − λ̃k), α ∈ (0, 2). (4.2b)

Setting w = w∗ in (4.2a), we get (λ̃k − λ∗)T 1
β

(λk − λ̃k) ≥ 0 and thus

(λk − λ∗)T (λk − λ̃k) ≥ ‖λk − λ̃k‖2. (4.3)

Similar as (2.15) in Section 2.4, by using (4.2b) and (4.3), we get

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − α(2− α)‖λk − λ̃k‖2.
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In practical computation, we take α ∈ (1, 2) and (4.2) is called the extended augmented

Lagrangian method. Usually, it will accelerate the convergence significantly if we take an

enlarged α ∈ [1.2, 1.8]. The reason is the same as the one illustrated in Section 2.4.

In order to describe the algorithm prototype, we give the following definition.

Definition (Intermediate variables and Essential Variables)

For an iterative algorithm solving VI(Ω, F, θ), if some coordinates of w are not involved in

the beginning of each iteration, then these coordinates are called intermediate variables

and those required by the iteration are called essential variables (denoted by v).

• The sub-vector w\v is called intermediate variables.

• In some Algorithms, v is a proper sub-vector of w; however, v = w is also possible.

According to the above mentioned definition, in the the augmented Lagrangian method, x

is an intermediate variable and λ is the essential variable.
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4.2 Algorithms in a unified framework

A Prototype Algorithm for (4.1)

Prediction Step. With given vk , find a vector w̃k ∈ Ω which satisfying

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (4.4a)

where Q is not necessarily symmetric, but QT +Q is essentially positive definite.

Correction Step. Determine a nonsingular matrix M and a scalar α > 0, let

vk+1 = vk − αM(vk − ṽk). (4.4b)

• Usually, we do not take the output of (4.4a), ṽk , as the new iterate. Thus, ṽk is called
a predictor. The new iterate vk+1 given by (4.4b) is called the corrector.

• We say a matrix G is essentially positive definite, when G = RTHR, H is positive
definite, and w̃k is a solution of (4.1) when ‖R(vk − ṽk)‖ = 0.

• We use the extended ALM in Section 4.1 as an example. In (4.2a) we have v = λ,
Q = 1

β
I , while in the correction step (4.2b), M = I and α ∈ (0, 2).

• When vk = ṽk , it follows from (4.4a) directly that w̃k is a solution of (4.1). Thus, one
can use ‖vk − ṽk‖ < ε as the stopping criterion in (4.4).
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Convergence Conditions

For the matrices Q and M , and the step size α determined in (4.4), the matrices

H = QM−1 (4.5a)

and

G = QT +Q− αMTHM. (4.5b)

are positive definite (or H � 0 and G � 0).

• We use the extended ALM in Section 4.1 as an example. Since Q = 1
β
I in the

prediction step, and M = I and α ∈ (0, 2) in the correction step, it follows that

H = QM−1 = 1
β
I and G = QT +Q− αMTHM = 2−α

β
I.

Therefore, the convergence conditions are satisfied.

• For G � 0, it has the O(1/t) convergence rate in a ergodic sense. If G � 0, the

sequence {vk} is Fèjer monotone and converges to a v∗ ∈ V∗ in H-norm.

• Using the unified framework, the convergence proof is very simple. In addition, it will
help us to construct more efficient splitting contraction method for convex optimization
with different structures.
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Given a positive definite matrix Q in (4.4a) (QT +Q � 0), for satisfying the convergence

conditions (4.5), how to choose the matrix M and α > 0 in the correction step (4.4b) ?

There are many possibilities, the principle is simplicity and efficiency. See an example:

• In order to ensure the symmetry and positivity of H = QM−1, we take

H = QD−1QT ,

where D is a symmetric investable block diagonal matrix. Because

H = QD−1QT and H = QM−1,

we only need to set M−1 = D−1QT and thus

M = Q−TD satisfies the condition (4.5a).

In this case, MTHM = QTM = QTQ−TD = D.

• After choosing the matrix M , let

αmax = arg max{α |QT +Q− αMTHM � 0},

the condition (4.5b) is satisfied for any α ∈ (0, αmax).
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4.3 Customized PPA satisfies the Convergence Condition

Recall the convex optimization problem discussed in Section 2, namely,

min{θ(x) | Ax = b, x ∈ X}.

The related variational inequality of the saddle point of the Lagrangian function is

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω.

where

w =


 x

λ


 , F (w) =


 −ATλ

Ax− b


 and Ω = X × <m.

For given vk = wk = (xk, λk), let the output of the (2.11) as a predictor and denote it

as w̃k = (x̃k, λ̃k). Then, we have




x̃k = arg min
{
θ(x)− (λk)T (Ax− b) + r

2
‖x− xk‖2

∣∣ x ∈ X
}
,

λ̃k = λk − 1
s
[A(2x̃k − xk)− b].

(4.6)
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Similar as (2.2), the output w̃k ∈ Ω of the iteration (4.6) satisfies

θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TH(wk − w̃k), ∀w ∈ Ω.

It is a form of (4.4a) where

Q = H =

(
rI AT

A sI

)
.

This matrix is positive definite when rs > ‖ATA‖. We take M = I in the correction

(4.4b) and the new iterate is updated by

wk+1 = wk − α(wk − w̃k), α ∈ (0, 2).

Then, we have and

H = QM−1 = Q � 0 and G = QT +Q− αMTHM = (2− α)H � 0.

The convergence conditions (4.5) are satisfied. More about customized PPA, please see

♣ G.Y. Gu, B.S. He and X.M. Yuan, Customized Proximal point algorithms for linearly

constrained convex minimization and saddle-point problem: a unified Approach, Comput.

Optim. Appl., 59(2014), 135-161.
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4.4 Primal-Dual relaxed PPA-based Contraction Methods

For given vk = wk = (xk, λk), denote the output of (2.4) by w̃k = (x̃k, λ̃k), it leads

x̃k = arg min
{
θ(x)− (λk)T (Ax− b) + r

2
‖x− xk‖2

∣∣ x ∈ X
}

(4.7a)

and (according to equality constraintsAx = b or inequality constranitsAx ≥ b)

λ̃k = λk − 1

s
(Ax̃k − b) or λ̃k = [λk − 1

s
(Ax̃k − b)]+. (4.7b)

Similar as in (2.8), the predictor w̃k ∈ Ω generated by (4.7) satisfies

θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (4.8)

where the matrix

Q =


 rIn AT

0 sIm


 , (4.9)

is not symmetric. However, (4.8) can be viewed as (4.4a). In this subsection, all the

mentioned matrix Q is (4.9). The example in Subsection 2.1 shows that the method is not

necessary convergent if we directly take wk+1 = w̃k .
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Corrector—the new iterate For given vk and the predictor ṽk by (4.7), we use

vk+1 = vk −M(vk − ṽk), (4.10)

to produce the new iterate, where

M =


 In

1
r
AT

0 Im




is a upper triangular block matrix whose diagonal part is unit matrix. Note that

H = QM−1 =


 rIn AT

0 sIm




 In − 1

r
AT

0 Im


 =


 rIn 0

0 sIm


 � 0.

In addition,

G = QT +Q−MTHM = QT +Q−QTM

=


rIn 0

0 sIm − 1
r
AAT


 .
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G is positive definite when rs > ‖ATA‖. The convergence conditions (4.5) are satisfied.

Convergence behaviors for LP Same toy example as in Section 3

min{x1 + 2x2 |x1 + x2 = 1, x ≥ 0}, (x∗, y∗) = (1, 0; 1).

s(1,0;1)
w∗6

6
-
@
@
@
@
@R

?�@
@

@
@
@I

s
q
q q

q
qq(0,0;0)w0

w7
w1

w2 w3

w4w4

w5w6

Original PDHG

s- (1,0;1)
w∗

w1

6

s
q

(0,0;0)w0

w̃0

PDHG + Correction

This example shows, sometimes the correction has surprising effectiveness.
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In the correction step (4.10), the matrix M is a upper-triangular matrix. We can also use

the lower-triangular matrix

M =


 In 0

− 1
s
A Im




According to (4.5a), H = QM−1, by a simple computation, we have

H =


 rIn AT

0 sIm




 In 0

1
s
A Im


 =


 rIn + 1

s
ATA AT

A sIm


 .

H is positive definite for any r, s > 0. In addition,

G = QT +Q−MTHM = QT +Q−QTM

=


2rIn AT

A 2sIm


−


rIn 0

0 sIm


 =


rIn AT

A sIm


 .

G is positive definite when rs > ‖ATA‖. The convergence conditions (4.5) are satisfied.

For a given prediction, there are different corrections which satisfy the convergence

conditions (4.5). For example, we can take a convex combination of the above mentioned

46



97

matrices. Namely, for τ ∈ [0, 1]

M = (1− τ)


 In

1
r
AT

0 Im


+ τ


 In 0

− 1
s
A Im




=


 In

1−τ
r
AT

− τ
s
A Im


 .

For this matrix M , we denote

Π = I +
τ(1− τ)

rs
AAT .

Clearly, Π is positive definite. Let

H =


 rIn + τ2

s
ATΠ−1A τATΠ−1

τΠ−1A sΠ−1


 .

It is easy to verify that H is positive definite for any r, s > 0 and

HM = Q.
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Now, we turn to observe the matrix G, it leads that

G = QT +Q−MTHM = QT +Q−QTM

=


2rIn AT

A 2sIm


−


rIn 0

A sIm




 In

1−τ
r
AT

−τ
s
A Im




=


rIn τAT

τA s(Im − 1−τ
rs
AAT )




=


rIn τAT

τA τ2sI


+


0 0

0 s(1− τ)[(1 + τ)Im − 1
rs
AAT ]


 .

For τ ∈ [0, 1], G is positive definite when rs > ‖ATA‖. The convergence conditions

(4.5) are satisfied. Especially, in the case τ = 1/2, when rs > 3
4
‖ATA‖,

G =


rIn

1
2
AT

1
2
A s(Im − 1

2rs
AAT )


 � 0.

We do not need to calculate H and G, only verifying their positivity is necessary.
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5 Convergence proof in the unified framework

In this section, assuming the conditions (4.5) in the unified framework are satisfied, we

prove some convergence properties.

Theorem 5.1 Let {vk} be the sequence generated by a method for the problem (4.1) and

w̃k is obtained in the k-th iteration. If vk , vk+1 and w̃k satisfy the conditions in the

unified framework, then we have

α
(
θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

)

≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+
α

2
‖vk − ṽk‖2G, ∀w ∈ Ω. (5.1)

Proof. Using Q = HM (see (4.5a)) and the relation (4.4b), the right hand side of (4.4a)

can be written as (v − ṽk)T 1
α
H(vk − vk+1) and hence

α{θ(u)−θ(ũk)+(w−w̃k)TF (w̃k)} ≥ (v−ṽk)TH(vk−vk+1), ∀w ∈ Ω. (5.2)

Applying the identity

(a− b)TH(c− d) =
1

2
{‖a− d‖2H − ‖a− c‖2H}+

1

2
{‖c− b‖2H − ‖d− b‖2H},
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to the right hand side of (5.2) with

a = v, b = ṽk, c = vk, and d = vk+1,

we thus obtain

(v − ṽk)TH(vk − vk+1)

=
1

2

(
‖v − vk+1‖2H−‖v − vk‖2H

)
+

1

2
(‖vk − ṽk‖2H−‖vk+1 − ṽk‖2H).(5.3)

For the last term of (5.3), we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk)− (vk − vk+1)‖2H

(4.4b)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)− αM(vk − ṽk)‖2H
= 2α(vk − ṽk)THM(vk − ṽk)− α2(vk − ṽk)TMTHM(vk − ṽk)

= α(vk − ṽk)T (QT +Q− αMTHM)(vk − ṽk)
(4.5b)
= α‖vk − ṽk‖2G. (5.4)

Substituting (5.3), (5.4) in (5.2), the assertion of this theorem is proved. 2
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5.1 Convergence in a strictly contraction sense

Theorem 5.2 Let {vk} be the sequence generated by a method for the problem (4.1) and

w̃k is obtained in the k-th iteration. If vk , vk+1 and w̃k satisfy the conditions in the

unified framework, then we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (5.5)

Proof. Setting w = w∗ in (5.1), we get

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H
≥ α‖vk − ṽk‖2G + 2α{θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k)}. (5.6)

By using the optimality of w∗ and the monotonicity of F (w), we have

θ(ũk)−θ(u∗)+(w̃k−w∗)TF (w̃k) ≥ θ(ũk)−θ(u∗)+(w̃k−w∗)TF (w∗) ≥ 0

and thus

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ α‖vk − ṽk‖2G. (5.7)

The assertion (5.5) follows directly. 2

For the convergence in a strictly contraction, the matrix G should be positive definite.
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5.2 Convergence rate in an ergodic sense

Equivalent Characterization of the Solution Set of VI

For the convergence rate analysis, we need another characterization of the solution set of

VI (4.1). It can be described the following theorem and the proof can be found in [9]

(Theorem 2.3.5) or [25] (Theorem 2.1).

Theorem 5.3 The solution set of VI(Ω, F, θ) is convex and it can be characterized as

Ω∗ =
⋂

w∈Ω

{
w̃ ∈ Ω :

(
θ(u)− θ(ũ)

)
+ (w − w̃)TF (w) ≥ 0

}
. (5.8)

Proof. Indeed, if w̃ ∈ Ω∗, we have

θ(u)− θ(ũ) + (w − w̃)TF (w̃) ≥ 0, ∀w ∈ Ω.

By using the monotonicity of F on Ω, this implies that

θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ 0, ∀w ∈ Ω.

Thus, w̃ belongs to the right-hand set in (5.8). Conversely, suppose w̃ belongs to the latter
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set of (5.8). Let w ∈ Ω be arbitrary. The vector

w̄ = αw̃ + (1− α)w

belongs to Ω for all α ∈ (0, 1). Thus we have

θ(ū)− θ(ũ) + (w̄ − w̃)TF (w̄) ≥ 0. (5.9)

Because θ(·) is convex, we have

θ(ū) ≤ αθ(ũ) + (1− α)θ(u) ⇒ (1− α)(θ(u)− θ(ũ)) ≥ θ(u)− θ(ũ).

Substituting it in (5.9) and using w̄ − w̃ = (1− α)(w − w̃), we get

(θ(u)− θ(ũ)) + (w − w̃)TF (αw̃ + (1− α)w) ≥ 0

for all α ∈ (0, 1). Letting α→ 1, it yields

(θ(u)− θ(ũ)) + (w − w̃)TF (w̃) ≥ 0.

Thus w̃ ∈ Ω∗. Now, we turn to prove the convexity of Ω∗. For each fixed but arbitrary

w ∈ Ω, the set

{w̃ ∈ Ω : θ(ũ) + w̃TF (w) ≤ θ(u) + wTF (w)}
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and its equivalent expression

{w̃ ∈ Ω :
(
θ(u)− θ(ũ)

)
+ (w − w̃)TF (w) ≥ 0}

is convex. Since the intersection of any number of convex sets is convex, it follows that the

solution set of VI(Ω, F, θ) is convex. 2

In Theorem 5.3, we have proved the equivalence of

w̃ ∈ Ω, θ(u)− θ(ũ) + (w − w̃)TF (w̃) ≥ 0, ∀w ∈ Ω,

and

w̃ ∈ Ω, θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ 0, ∀w ∈ Ω.

We use the late one to define the approximate solution of VI (4.1). Namely, for given

ε > 0, w̃ ∈ Ω is called an ε-approximate solution of VI(Ω, F, θ), if it satisfies

w̃ ∈ Ω, θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ −ε, ∀ w ∈ D(w̃),

where

D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}.
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We need to show that for given ε > 0, after t iterations, it can offer a w̃ ∈ W , such that

w̃ ∈ W and sup
w∈D(w̃)

{
θ(ũ)− θ(u) + (w̃ − w)TF (w)

}
≤ ε. (5.10)

Theorem 5.1 is also the base for the convergence rate proof. Using the monotonicity of F ,

we have

(w − w̃k)TF (w) ≥ (w − w̃k)TF (w̃k).

Substituting it in (5.1), we obtain

θ(u)−θ(ũk)+(w− w̃k)TF (w) +
1

2α
‖v− vk‖2H ≥

1

2α
‖v− vk+1‖2H , ∀w ∈ Ω.

(5.11)

Note that the above assertion is hold for G � 0.

Theorem 5.4 Let {vk} be the sequence generated by a method for the problem (4.1) and

w̃k is obtained in the k-th iteration. Assume that vk , vk+1 and w̃k satisfy the conditions

in the unified framework and let w̃t be defined by

w̃t =
1

t+ 1

t∑

k=0

w̃k. (5.12)
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Then, for any integer number t > 0, w̃t ∈ Ω and

θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2α(t+ 1)
‖v − v0‖2H , ∀w ∈ Ω. (5.13)

Proof. First, it holds that w̃k ∈ Ω for all k ≥ 0. Together with the convexity of X and Y ,

(5.12) implies that w̃t ∈ Ω. Summing the inequality (5.11) over k = 0, 1, . . . , t, we

obtain

(t+1)θ(u)−
t∑

k=0

θ(ũk)+
(

(t+1)w−
t∑

k=0

w̃k
)T
F (w)+

1

2α
‖v−v0‖2H ≥ 0, ∀w ∈ Ω.

Use the notation of w̃t, it can be written as

1

t+ 1

t∑

k=0

θ(ũk)− θ(u) + (w̃t −w)TF (w) ≤ 1

2α(t+ 1)
‖v− v0‖2H , ∀w ∈ Ω.

(5.14)

Since θ(u) is convex and

ũt =
1

t+ 1

t∑

k=0

ũk,
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we have that

θ(ũt) ≤ 1

t+ 1

t∑

k=0

θ(ũk).

Substituting it in (5.14), the assertion of this theorem follows directly. 2

Recall (5.10). The conclusion (5.13) thus indicates obviously that the method is able to

generate an approximate solution (i.e., w̃t) with the accuracy O(1/t) after t iterations.

That is, in the case G � 0, the convergence rate O(1/t) of the method is established.

• For the unified framework and the convergence proof, the reader can consult:

B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive Peaceman-

Rachford splitting method for convex programming, SIAM Journal on

Optimization 24(2014), 1011-1040.

• B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the alternating

direction method, SIAM J. Numerical Analysis 50(2012), 700-709.
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5.3 Convergence rate in pointwise iteration-complexity

In this subsection, we show that if the matrix G defined in (4.5b) is positive definite, a

worst-case O(1/t) convergence rate in a nonergodic sense can also be established for

the prototype algorithm (4.4). Note in general a nonergodic convergence rate is stronger

than the ergodic convergence rate.

We first need to prove the following lemma.

Lemma 5.1 For the sequence generated by the prototype algorithm (4.4) where the

Convergence Condition is satisfied, we have

(vk − ṽk)TMTHM{(vk − ṽk)− (vk+1 − ṽk+1)}

≥ 1

2α
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT+Q). (5.15)

Proof. First, set w = w̃k+1 in (4.4a), we have

θ(ũk+1)− θ(ũk) + (w̃k+1 − w̃k)TF (w̃k) ≥ (ṽk+1 − ṽk)TQ(vk − ṽk). (5.16)
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Note that (4.4a) is also true for k := k + 1 and thus we have

θ(u)−θ(ũk+1)+(w−w̃k+1)TF (w̃k+1) ≥ (v−ṽk+1)TQ(vk+1−ṽk+1), ∀w ∈ Ω.

Set w = w̃k in the above inequality, we obtain

θ(ũk)− θ(ũk+1) + (w̃k − w̃k+1)TF (w̃k+1) ≥ (ṽk − ṽk+1)TQ(vk+1 − ṽk+1).

(5.17)

Combining (5.16) and (5.17) and using the monotonicity of F , we get

(ṽk − ṽk+1)TQ{(vk − ṽk)− (vk+1 − ṽk+1)} ≥ 0. (5.18)

Adding the term

{(vk − ṽk)− (vk+1 − ṽk+1)}TQ{(vk − ṽk)− (vk+1 − ṽk+1)}

to the both sides of (5.18), and using vTQv = 1
2
vT (QT +Q)v, we obtain

(vk−vk+1)TQ{(vk−ṽk)−(vk+1−ṽk+1)} ≥ 1

2
‖(vk−ṽk)−(vk+1−ṽk+1)‖2(QT+Q).

Substituting (vk − vk+1) = αM(vk − ṽk) in the left-hand side of the last inequality

and using Q = HM , we obtain (5.15) and the lemma is proved. 2
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Now, we are ready to prove (5.19), the key inequality in this section.

Theorem 5.5 For the sequence generated by the prototype algorithm (4.4) where the

Convergence Condition is satisfied, we have

‖M(vk+1 − ṽk+1)‖H ≤ ‖M(vk − ṽk)‖H , ∀ k > 0. (5.19)

Proof. Setting a = M(vk − ṽk) and b = M(vk+1 − ṽk+1) in the identity

‖a‖2H − ‖b‖2H = 2aTH(a− b)− ‖a− b‖2H ,

we obtain

‖M(vk − ṽk)‖2H − ‖M(vk+1 − ṽk+1)‖2H
= 2(vk − ṽk)TMTHM [(vk − ṽk)− (vk+1 − ṽk+1)]

−‖M [(vk − ṽk)− (vk+1 − ṽk+1)]‖2H .
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Inserting (5.15) into the first term of the right-hand side of the last equality, we obtain

‖M(vk − ṽk)‖2H − ‖M(vk+1 − ṽk+1)‖2H
≥ 1

α
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT+Q) − ‖M [(vk − ṽk)− (vk+1 − ṽk+1)]‖2H

=
1

α
‖(vk − ṽk)− (vk+1 − ṽk+1)‖2G ≥ 0,

where the last inequality is because of the positive definiteness of the matrix

(QT +Q)− αMTHM � 0. The assertion (5.19) follows immediately. 2

Note that it follows from G � 0 and Theorem 5.2 there is a constant c0 > 0 such that

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − c0‖M(vk − ṽk)‖2H , ∀v∗ ∈ V∗. (5.20)

Now, with (5.20) and (5.19), we can establish the worst-case O(1/t) convergence rate in

a nonergodic sense for the prototype algorithm (4.4).

Theorem 5.6 Let {vk} and {w̃k} be the sequences generated by the prototype

algorithm (4.4) under the Convergence Condition. For any integer t > 0, we have

‖M(vt − ṽt)‖2H ≤
1

(t+ 1)c0
‖v0 − v∗‖2H . (5.21)
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Proof. First, it follows from (5.20) that

∞∑

k=0

c0‖M(vk − ṽk)‖2H ≤ ‖v0 − v∗‖2H , ∀ v∗ ∈ V∗. (5.22)

According to Theorem 5.5, the sequence {‖M(vk − ṽk)‖2H} is monotonically

non-increasing. Therefore, we have

(t+ 1)‖M(vt − ṽt)‖2H ≤
t∑

k=0

‖M(vk − ṽk)‖2H . (5.23)

The assertion (5.21) follows from (5.22) and (5.23) immediately. 2

Let d := inf{‖v0 − v∗‖H | v∗ ∈ V∗}. Then, for any given ε > 0, Theorem 5.6 shows

that it needs at most bd2/c0εc iterations to ensure that ‖M(vk − ṽk)‖2H ≤ ε. Recall

that vk is a solution of VI(Ω, F, θ) if ‖M(vk − ṽk)‖2H = 0 (see (4.4a) and due to

Q = HM ). A worst-case O(1/t) convergence rate in pointwise iteration-complexity is

thus established for the prototype algorithm (4.4).

Notice that, for a differentiable unconstrained convex optimization min f(x), it holds that

f(x)− f(x∗) = ∇f(x∗)T (x− x∗) +O(‖x− x∗‖2) = O(‖x− x∗‖2).
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6 ADMM for problems with two separable blocks

This section concern the structured convex optimization problem (3.6) in Section 3.2,

namely,

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}.
The augmented Lagrange Function of (3.6) is

L[2]
β (x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By− b) +

β

2
‖Ax+By− b‖2, (6.1)

where β > 0 is a penalty coefficient. Using the augmented Lagrange function, the

augmented Lagrangian method (3.10)-(3.11) for solving the problem (3.6) can be written as




(xk+1, yk+1) = arg min
{
L[2]
β (x, y, λk)

∣∣ x ∈ X , y ∈ Y
}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b).
(6.2)

The recursion of the alternating direction method of multipliers (3.12) for the structured
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convex optimization (3.6) can be written as





xk+1 = Argmin{L[2]
β (x, yk, λk) |x ∈ X},

yk+1 = Argmin{L[2]
β (xk+1, y, λk) | y ∈ Y},

λk+1 = λk − β(Axk+1 +Byk+1 − b).
(6.3)

Thus, ADMM can be viewed as a relaxed Augmented Lagrangian Method. The main

advantage of ADMM is that one can solve the x and y-subproblem separately. Note that

the essential variable of ADMM (6.3) is v = (y, λ).

Since 1997, we focus our attention to ADMM, see [23]. Later, in 2002, we have

ADMM paper published in Mathematical Programming [18].

♣ B. S. He and H. Yang, Some convergence properties of a method of multipliers for

linearly constrained monotone variational inequalities, Operations Research Letters

23(1998), 151–161.

♣ B. S. He, L. Z. Liao, D. Han, and H. Yang, A new inexact alternating directions method

for monontone variational inequalities, Mathematical Programming 92(2002), 103–118.
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6.1 Classical ADMM in the Unified Framework

This subsection shows that the ADMM scheme (6.3) is also a special case of the prototype

algorithm (4.4) and the Convergence Condition is satisfied. Recall the model (3.6) can be

explained as the VI (4.1) with the specification given in (3.8b).

In order to cast the ADMM scheme (6.3) into a special case of (4.4), let us first define the

artificial vector w̃k = (x̃k, ỹk, λ̃k) by

x̃k = xk+1, ỹk = yk+1 and λ̃k = λk − β(Axk+1 +Byk − b), (6.4)

where (xk+1, yk+1) is generated by the ADMM (6.3).

According to the scheme (6.3), the defined artificial vector w̃k satisfies the following VI:




θ1(x)− θ1(x̃k) + (x− x̃k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X ,
θ2(y)− θ2(ỹk) + (y − ỹk)T (−BT λ̃k + βBTB(ỹk − yk)) ≥ 0, ∀ y ∈ Y,

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0.

This can be written in form of (4.4a) as described in the following lemma.

Lemma 6.1 For given vk , let wk+1 be generated by (6.3) and w̃k be defined by (6.4).

116

Then, we have

w̃k ∈ Ω, θ(u)− θ(ũk) + (w− w̃k)TF (w̃k) ≥ (v− ṽk)TQ(vk − ṽk), ∀w ∈ Ω,

where

Q =


 βBTB 0

−B 1
β
I


 . (6.5)

Recall the essential variable of the ADMM scheme (6.3) is (y, λ). Moreover, using the

definition of w̃k , the λk+1 updated by (6.3) can be represented as

λk+1 = λk − β(Ax̃k +Bỹk − b)
= λk −

[
−βB(yk − ỹk) + β(Ax̃k +Byk − b)]

= λk −
[
−βB(yk − ỹk) + (λk − λ̃k)

]
.

Therefore, the ADMM scheme (6.3) can be written as

 yk+1

λk+1


 =


 yk

λk


−


 I 0

−βB I




 yk − ỹk

λk − λ̃k


 . (6.6a)
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which corresponds to the step (4.4b) with

M =


 I 0

−βB I


 and α = 1. (6.6b)

Now we check that the Convergence Condition is satisfied by the ADMM scheme (6.3).

Indeed, for the matrix M in (6.6b), we have

M−1 =


 I 0

βB I


 .

Thus, by using (6.5) and (6.6b), we obtain

H = QM−1 =


 βBTB 0

−B 1
β
I




 I 0

βB I


 =


 βBTB 0

0 1
β
I


 ,
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and consequently

G = QT +Q− αMTHM = QT +Q−QTM

=


2βBTB −BT

−B 2
β
I


−


βB

TB −BT

0 1
β
I




 I 0

−βB I




=


2βBTB −BT

−B 2
β
I


−


2βBTB −BT

−B 1
β
I


 =


 0 0

0 1
β
I


 .(6.7)

Therefore, H is symmetric and positive definite under the assumption that B is full column

rank; and G is positive semi-definite. The Convergence Condition is satisfied; and thus the

convergence of the ADMM scheme (6.3) is guaranteed.

Note that Theorem 5.4 is true for G � 0. Thus the classical ADMM (6.3) has O(1/t)

convergence rate in the ergodic sense.

Since α = 1, according to (5.5) and the form of G in (6.7), we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − 1
β
‖λk − λ̃k‖2, ∀v∗ ∈ V∗. (6.8)
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Lemma 6.2 For given vk , let wk+1 be generated by (6.3) and w̃k be defined by (6.4).

Then, we have
1
β
‖λk − λ̃k‖2 ≥ ‖vk − vk+1‖2H . (6.9)

Proof. According to (6.3) and (6.4), the optimal condition of the y-subproblem is

ỹk ∈ Y, θ2(y)−θ2(ỹk)+(y−ỹk)T {−BT λ̃k+βBTB(ỹk−yk)} ≥ 0, ∀ y ∈ Y.

Because

λk+1 = λ̃k − βB(ỹk − yk) and ỹk = yk+1,

it can be written as

yk+1 ∈ Y, θ2(y)−θ2(yk+1)+(y−yk+1)T {−BTλk+1} ≥ 0, ∀ y ∈ Y. (6.10)

The above inequality is hold also for the last iteration, i. e., we have

yk ∈ Y, θ2(y)− θ2(yk) + (y − yk)T {−BTλk} ≥ 0, ∀ y ∈ Y. (6.11)

Setting y = yk in (6.10) and y = yk+1 in (6.11), and then adding them, we get

(λk − λk+1)TB(yk − yk+1) ≥ 0. (6.12)
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Using λk− λ̃k = (λk−λk+1) +βB(yk− yk+1) and the inequality (6.12), we obtain

1
β
‖λk − λ̃k‖2 = 1

β
‖(λk − λk+1) + βB(yk − yk+1)‖2

≥ 1
β
‖λk − λk+1‖2 + β‖B(yk − yk+1)‖2

= ‖vk − vk+1‖2H .

The assertion of this lemma is proved. 2

Substituting (6.9) in (6.8), we get the following nice property of the classical ADMM.

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H , ∀v∗ ∈ V∗.

which is the same as (3.27) in Section 3.2.

Notice that the sequence {‖vk − vk+1‖2H} generated by the classical ADMM is

monotone non-increasing [27]. In fact, in Theorem 5.5, we have proved that (see (5.19))

‖M(vk − ṽk)‖H ≤ ‖M(vk−1 − ṽk−1)‖H , ∀ k ≥ 1. (6.13)

Because (see the correction formula (6.6))

vk − vk+1 = M(vk − ṽk),
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it follows from (6.13) that

‖vk − vk+1‖2H ≤ ‖vk−1 − vk‖2H .

On the other hand, the inequality (3.27) tell us that

∞∑

k=0

‖vk − vk+1‖2H ≤ ‖v0 − v∗‖2H .

Thus, we have

‖vt − vt+1‖2H ≤ 1

t+ 1

t∑

k=0

‖vk − vk+1‖2H

≤ 1

t+ 1

∞∑

k=0

‖vk − vk+1‖2H ≤
1

t+ 1
‖v0 − v∗‖2H .

Therefore, ADMM (6.3) has O(1/t) convergence rate in pointwise iteration-complexity.
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6.2 ADMM in Sense of Customized PPA [3]

If we change the performance order of y and λ of the classical ADMM (6.3), it becomes





xk+1 = Argmin{L[2]
β (x, yk, λk) |x ∈ X},

λk+1 = λk − β(Axk+1 +Byk − b),

yk+1 = Argmin{L[2]
β (xk+1, y, λk+1) | y ∈ Y}.

(6.14)

In this way we can get a positive semidefinite matrix Q in (4.4a). We define

x̃k = xk+1, ỹk = yk+1, λ̃k = λk+1, (6.15)

where (xk+1, yk+1, λk+1) is the output of (9.3) and thus it can be rewritten as





x̃k = Argmin{L[2]
β (x, yk, λk) |x ∈ X},

λ̃k = λk − β(Ax̃k +Byk − b),

ỹk = Argmin{L[2]
β (x̃k, y, λ̃k) | y ∈ Y}.

(6.16)
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Because λ̃k = λk+1 = λk − β(Ax̃k +Byk − b), the optimal condition of the

x-subproblem of (6.16) is

θ1(x)− θ1(x̃k) + (x− x̃k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X . (6.17)

Notice that

L[2]
β (x̃k, y, λ̃k) = θ1(x̃k) + θ2(y)− (λ̃k)T (Ax̃k +By − b) + β

2
‖Ax̃k +By − b‖2,

ignoring the constant term in the y optimization subproblem of (6.16), it turns to

ỹk = Argmin{θ2(y)− (λ̃k)TBy + β
2
‖Ax̃k +By − b‖2 | y ∈ Y},

and consequently, the optimal condition is ỹk ∈ Y ,

θ2(y)− θ2(ỹk) + (y − ỹk)T
[
−BTλ̃k + βBT(Ax̃k +Bỹk − b)

]
≥ 0, ∀y ∈ Y.

For the term [ · ] in the last inequality, using β(Ax̃k +Byk − b) = −(λ̃k − λk), we

have

−BTλ̃k + βBT(Ax̃k +Bỹk − b)
= −BTλ̃k + βBTB(ỹk − yk) + βBT(Ax̃k +Byk − b)
= −BTλ̃k + βBTB(ỹk − yk)−BT (λ̃k − λk).
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Finally, the optimal condition of the y-subproblem can be written as ỹk ∈ Y and

θ2(y)−θ2(ỹk)+(y−ỹk)T
[
−BTλ̃k+βBTB(ỹk−yk)−BT(λ̃k−λk)

]
≥ 0, ∀y ∈ Y.

(6.18)

From the λ update form in (6.16) we have

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0. (6.19)

Combining (6.17), (6.18) and (6.19), and using the notations of (3.8), we get following

lemma.

Lemma 6.3 For given vk , let w̃k be generated by (6.16). Then, we have

w̃k ∈ Ω, θ(u)− θ(ũk) + (w− w̃k)TF (w̃k) ≥ (v− ṽk)TQ(vk − ṽk), ∀w ∈ Ω,

where

Q =


 βBTB −BT

−B 1
β
Im


 . (6.20)

Because Q is symmetric and positive semidefinite, according to (4.4), we can take

M = I α ∈ (0, 2) and thus H = Q.
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In this way, we get the new iterate by

vk+1 = vk − α(vk − ṽk).

The generated sequence {vk} has the convergence property

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α(2− α)‖vk − ṽk‖2H .

Ensure the matrix H to be positive definite If we add an additional proximal term

δβ
2
‖B(y − yk)‖2 to the y-subproblem of (6.16) with any small δ > 0, it becomes




x̃k = Argmin{L[2]
β (x, yk, λk) |x ∈ X},

λ̃k = λk − β(Ax̃k +Byk − b),
ỹk = Argmin{L[2]

β (x̃k, y, λ̃k) + δβ
2
‖B(y − yk)‖2 | y ∈ Y}.

(6.21)

In the ADMM based customized PPA (6.16), the y-subproblem can be written as

ỹk = Argmin{θ2(y) + β
2
‖By − pk‖2 | y ∈ Y}, (6.22)

where

pk = b+ 1
β
λ̃k −Ax̃k.
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If we add an additional term δβ
2
‖B(y − yk)‖2 (with any small δ > 0) to the objective

function of the y-subproblem, we will get ỹk via

ỹk = Argmin{θ2(y) + β
2
‖By − pk‖2 + δβ

2
‖B(y − yk)‖2 | y ∈ Y}.

By a manipulation, the solution point of the above subproblem is obtained via

ỹk = Argmin{θ2(y) + (1+δ)β
2
‖By − qk‖2 | y ∈ Y}, (6.23)

where

qk = 1
1+δ

(pk + δByk).

In this way, the matrix Q in (6.20) will turn to

Q =


 (1 + δ)βBTB −BT

−B 1
β
Im


 .

Take H = Q, for any δ > 0, H is positive definite when B is a full rank matrix. In other

words, instead of (6.22), using (6.23) to get ỹk , it will ensure the positivity of H

theoretically. However, in practical computation, it works still well by using δ = 0.
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ADMM in sense of customized PPA
1. Produce a predictor w̃k via (6.21) with given vk = (yk, λk),

2. Update the new iterate by vk+1 = vk − α(vk − ṽk), α = 1.5 ∈ (0, 2).

Theorem 6.1 The sequence {vk}generated by the ADMM in Sense of PPA sat-

isfies

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α(2− α)‖vk − ṽk‖2H , ∀v∗ ∈ V∗,

where

H =


 (1 + δ)βBTB −BT

−B 1
β Im


 .

Since the correction formula is vk+1 = vk − α(vk − ṽk), the contraction

inequality can be written as

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H −
(2− α)

α
‖vk − vk+1‖2H , ∀v∗ ∈ V∗.
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Notice that the sequence {‖vk − vk+1‖2H} generated by the ADMM in sense of

PPA is also monotone non-increasing. Again, because (see (5.19))

‖M(vk − ṽk)‖H ≤ ‖M(vk−1 − ṽk−1)‖H , ∀ k ≥ 1. (6.24)

it follows from (6.24) and the correction formula that

‖vk − vk+1‖2H ≤ ‖vk−1 − vk‖2H .

Thus, we have

‖vt − vt+1‖2H ≤ 1

t+ 1

∞∑

k=0

‖vk − vk+1‖2H

≤ 1

t+ 1

α

2− α‖v
0 − v∗‖2H .

Therefore, ADMM (in Sense of Customized PPA) has O(1/t) convergence rate

in pointwise iteration-complexity.
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6.3 Symmetric ADMM [19]

In the problem (3.6) in Section 3.2, x and y are a pair of fair variables. It is nature to

consider a symmetric method: Update the Lagrangian Multiplier after solving each x and

y-subproblem. .

We take µ ∈ (0, 1) (usually µ = 0.9), the method is described as

(S-ADMM)





xk+1 = Argmin{L[2]
β (x, yk, λk) |x ∈ X}, (6.25a)

λk+ 1
2 = λk − µβ(Axk+1 +Byk − b), (6.25b)

yk+1 = Argmin{L[2]
β (xk+1, y, λk+ 1

2 ) | y ∈ Y}, (6.25c)

λk+1 = λk+ 1
2 − µβ(Axk+1 +Byk+1 − b). (6.25d)

This method is called Alternating direction method of multipliers with symmetric

multipliers updating, or Symmetric Alternating Direction Method of Multipliers.

The convergence of the proposed method is established via the unified framework.
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For establishing the main result, we introduce an artificial vector w̃k by

w̃k =




x̃k

ỹk

λ̃k


 =




xk+1

yk+1

λk − β(Axk+1 +Byk − b)


 , (6.26)

where (xk+1, yk+1) is generated by the ADMM (6.25). First, by using (6.26), we interpret

(6.25a)-(6.25c) as a prediction which only involves the variables wk and w̃k .

According to (6.26), by using λ̃k = λk − β(Axk+1 +Byk − b), the optimal

condition of the x-subproblem (6.25a) is

θ1(x)− θ1(x̃k) + (x− x̃k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X . (6.27)

Notice that the objective function of the y-subproblem (6.25c) is

L[2]
β (x̃k, y, λk+ 1

2 )

= θ1(x̃k) + θ2(y)− (λk+ 1
2 )T (Ax̃k +By − b) + β

2
‖Ax̃k +By − b‖2.

Ignoring the constant term in the y-subproblem, it turns to

ỹk = Argmin{θ2(y)− (λk+ 1
2 )TBy + β

2
‖Ax̃k +By − b‖2 | y ∈ Y}.
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Consequently, according to Lemma 1.1, we have

ỹk ∈ Y, θ2(y)− θ2(ỹk)

+(y − ỹk)T
{
−BTλk+ 1

2 + βBT (Ax̃k +Bỹk − b)
}
≥ 0, ∀ y ∈ Y.

Using λ̃k = λk − β(Axk+1 +Byk − b), we get

λk+ 1
2 = λk − µ(λk − λ̃k) = λ̃k + (1− µ)(λk − λ̃k),

and

β(Ax̃k +Byk − b) = (λ̃k − λk).

Thus,

−BTλk+ 1
2 + βBT (Ax̃k +Bỹk − b)

= −BT [λ̃k + (1− µ)(λk − λ̃k)] + βBTB(ỹk − yk)

+βBT (Ax̃k +Byk − b)
= −BT λ̃k − (1− µ)BT (λk − λ̃k) + βBTB(ỹk − yk)

+BT (λk − λ̃k)

= −BT λ̃k + βBTB(ỹk − yk)− µBT (λ̃k − λk).
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Finally, the optimal condition of the y-subproblem can be written as ỹk ∈ Y , and

θ2(y)− θ2(ỹk) + (y − ỹk)T
{
−BT λ̃k + βBTB(ỹk − yk)

−µBT (λ̃k − λk)
}
≥ 0, ∀y ∈ Y. (6.28)

According to the definition of w̃k in (6.26), λ̃k = λk − β(Axk+1 +Byk − b), we

have

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0. (6.29)

Combining (6.27), (6.28) and (6.29), and using the notations of (3.8), we get following

lemma.

Lemma 6.4 For given vk , let wk+1 be generated by (6.25) and w̃k be defined by (6.26).

Then, we have

w̃k ∈ Ω, θ(u)−θ(ũk)+(w− w̃k)TF (w̃k) ≥ (v− ṽk)TQ(vk− ṽk), ∀w ∈ Ω,

where

Q =


 βBTB −µBT

−B 1
β
Im


 . (6.30)
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We have finished to interpret (6.25a)-(6.25c) as a prediction. By a manipulation, the new

iterate λk+1 in (6.25d) can be represented as

λk+1 = [λk − µ(λk − λ̃k)]− µ
[
−βB(yk − ỹk) + β(Axk+1 +Byk − b)

]

= λk −
[
−µβB(yk − ỹk) + 2µ(λk − λ̃k)

]
. (6.31)

Thus, together with yk+1 = ỹk , the correction step can be represented as

 yk+1

λk+1


 =


 yk

λk


−


 I 0

−µβB 2µIm




 yk − ỹk

λk − λ̃k


 .

This can be rewritten into a compact form:

vk+1 = vk −M(vk − ṽk), (6.32a)

with

M =


 I 0

−µβB 2µIm


 . (6.32b)

These relationships greatly simplify our analysis and presentation.
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In order to use the unified framework, we only need to verify the positiveness of H and G.

For the matrix M given by (6.32b), we have

M−1 =

(
I 0

1
2
βB 1

2µ
Im

)
.

For H = QM−1, it follows that

H =

(
βBTB −µBT

−B 1
β
Im

)(
I 0

1
2
βB 1

2µ
Im

)
=

(
(1− 1

2
µ)βBTB − 1

2
BT

− 1
2
B 1

2µβ
Im

)
.

Thus

H =
1

2

(√
βBT 0

0
√

1
β
I

)(
(2− µ)I −I
−I 1

µ
I

)(√
βB 0

0
√

1
β
I

)
.

Notice that (
(2− µ) −1

−1 1
µ

)
=




� 0, µ ∈ (0, 1);

� 0, µ = 1.

Therefore, H is positive definite for any µ ∈ (0, 1) when B is a full column rank matrix.
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It remains to check the positiveness of G = QT +Q−MTHM . Note that

MTHM = MTQ =

(
I −µβBT

0 2µIm

)(
βBTB −µBT

−B 1
β
Im

)

=

(
(1 + µ)βBTB −2µBT

−2µB 2µ
β
Im

)
.

Using (6.30) and the above equation, we have

G = (QT +Q)−MTHM = (1− µ)

(
βBTB −BT

−B 2
β
Im

)
.

Thus

G = (1− µ)

(√
βBT 0

0
√

1
β
I

)(
I −I

−I 2I

)(√
βB 0

0
√

1
β
I

)
.
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Because the matrix (
1 −1

−1 2

)

is positive definite, for any µ ∈ (0, 1), G is essentially positive definite (positive definite

when B is a full column rank matrix). The convergence conditions (4.5) are satisfied.

Take µ = 0.9, it will accelerate the convergence much. For the numerical experiments of

this method, it is refereed to consult [19].

The symmetric ADMM is a special version of the unified framework (4.4) - (4.5) whose

α = 1,

H =


(1− 1

2
µ)βBTB − 1

2
BT

− 1
2
B 1

2µβ
Im


 and G = (1−µ)


 βBTB −BT

−B 2
β
Im


 .

Both the matrices H and G are positive definite for µ ∈ (0, 1). According to Theorem

5.2, we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗.
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7 Splitting Methods for p-block Problems

We consider the linearly constrained convex optimization with p separable operators

min
{ p∑

i=1

θi(xi)
∣∣

p∑

i=1

Aixi = b, xi ∈ Xi
}
. (7.1)

Its Lagrange function is

L(p)(x1, . . . , xp, λ) =

p∑

i=1

θi(xi)− λT (

p∑

i=1

Aixi − b), (7.2)

which defined on Ω :=
∏p
i=1 Xi ×<m. The related VI(Ω, F, θ) has the form

VI(Ω, F, θ) w∗ ∈ Ω, θ(x)− θ(x∗) + (w−w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (7.3a)

where

w =




x1

...

xp

λ



, θ(x) =

p∑

i=1

θi(xi), F (w) =




−AT1 λ
...

−ATp λ∑p
i=1 Aixi − b



. (7.3b)
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L[p]
β (x1, . . . , xp, λ) = L(x1, . . . , xp, λ) +

β

2
‖∑p

i=1Aixi − b‖
2 (7.4)

is the augmented Lagrangian function.

Direct Extension of ADMM Start with given (xk2 , . . . , x
k
p, λ

k),





xk+1
1 = arg min

{
L[p]
β (x1, x

k
2 , x

k
3 , . . . , x

k
p, λ

k)
∣∣ x1 ∈ X1

}
,

xk+1
2 = arg min

{
L[p]
β (xk+1

1 , x2, x
k
3 , . . . , x

k
p, λ

k)
∣∣ x2 ∈ X2

}
,

...

xk+1
i = arg min

{
L[p]
β (xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
p, λ

k)
∣∣ xi ∈ Xi

}
,

...

xk+1
p = arg min

{
L[p]
β (xk+1

1 , . . . , xk+1
m−1, xp, λ

k)
∣∣ xp ∈ Xp

}
,

λk+1 = λk − β
(∑p

i=1 Aix
k+1
i − b

)
.

(7.5)

There is counter example [6], it is not necessary convergent for the problem with m ≥ 3.
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7.1 ADMM with Gaussian Back Substitution [20]

Let (xk+1
1 , xk+1

2 , . . . , xk+1
p , λk+1) be the output of (7.5). By denoting

x̃ki = xk+1
i , i = 1, . . . , p (7.6)

the xi-subproblems of (7.5) can be written as




x̃k1 = arg min
{
L[p]
β (x1, x

k
2 , x

k
3 , . . . , x

k
p, λ

k)
∣∣ x1 ∈ X1

}
;

x̃k2 = arg min
{
L[p]
β (x̃k1 , x2, x

k
3 , . . . , x

k
p, λ

k)
∣∣ x2 ∈ X2

}
;

...

x̃ki = arg min
{
L[p]
β (x̃k1 , . . . , x̃

k
i−1, xi, x

k
i+1, . . . , x

k
p, λ

k)
∣∣ xi ∈ Xi

}
;

...

x̃kp = arg min
{
L[p]
β (x̃k1 , . . . , x̃

k
p−1, xp, λ

k)
∣∣ xp ∈ Xp

}
.

(7.7)

Additionally, we define

λ̃k = λk − β
(
A1x̃

k
1 +

p∑

j=2

Ajx
k
j − b

)
. (7.8)
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Using the notation of the augmented Lagrangian function (see (7.4)), the optimal condition
of the x1-subproblem of (7.7) can be written as

x̃k1 ∈ X1, θ1(x1)−θ1(x̃k1)+(x1− x̃k1)T
{
−AT1λk+βAT1(A1x̃

k
1+

p∑

j=2

Ajx
k
j −b)

}
≥ 0.

According to the definition of λ̃k (see (7.8)), it follows from the last inequality

x̃k1 ∈ X1, θ1(x1)− θ1(x̃k1) + (x1 − x̃k1)T
{
−AT1 λ̃k

}
≥ 0, ∀x1 ∈ X1. (7.9)

For i = 2, . . . ,m, the optimal condition of the xi-subproblem of (7.7) is

x̃ki ∈ Xi, θi(xi)− θi(x̃ki ) + (xi − x̃ki )T
{
−ATi λk

+βATi
[
A1x̃k1 +

∑i
j=2 Aj x̃

k
j +

∑p
j=i+1 Ajx

k
j − b

]}
≥ 0, ∀xi ∈ Xi.

Consequently, by using the definition of λ̃k , we have x̃ki ∈ Xi and

θi(xi)− θi(x̃ki ) + (xi − x̃ki )T
{
−ATi λ̃k +βATi

[ i∑

j=2

Aj(x̃
k
j − xkj )

]}
≥ 0, (7.10)

for all xi ∈ Xi. In addition, (7.8) can be written as

(

p∑

j=1

Aj x̃
k
j − b)−

p∑

j=2

Aj(x̃
k
j − xkj ) +

1

β
(λ̃k − λk) = 0. (7.11)
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Combining (7.9), (7.10) and (7.11) together and using the notations in (7.3), we obtain

Lemma 7.1 Let w̃k be generated by (7.7)-(7.8) from the given vector vk . Then, we have

w̃k ∈ Ω and

θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀ w ∈ Ω, (7.12)

where

Q =




βAT2 A2 0 · · · · · · 0

βAT3 A2 βAT3 A3

. . .
...

...
. . .

. . .
...

βATpA2 βATpA3 · · · βATpAp 0

−A2 −A3 · · · −Ap 1
β
Im




. (7.13)

142

After having (7.12), we have finished the prediction step (4.4a). The rest task is to

complete the correction step (4.4b), finding a matrix M and a constant α > 0, which

satisfy the convergence conditions (4.5). In the following we give some examples.

The first choice of Matrix M In the first choice, we take

M = Q−TD, (7.14)

where

D = diag(βAT2 A2, βA
T
3 A3, . . . , βA

T
pAp,

1

β
I).

By using the notation of D, we have

QT +Q = D + PTP

where

P = (
√
βA2,

√
βA3, . . . ,

√
βAp,

√
1

β
I). (7.15)

For the matrix H , according to the definition (4.5a), we have

H = QM−1 = QD−1QT
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and thus H is symmetric and positive definite. Because

MTHM = QTM = D,

it follows that

G = QT +Q− αMTHM = (1− α)D + PTP.

For any α ∈ (0, 1), G is positive definite.

How to implement the correction step ?

Because M = Q−TD and the correction is vk+1 = vk − αQ−TD(vk − ṽk), we

have

QT (vk+1 − vk) = αD(ṽk − vk). (7.16)
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According to the matrix P in (7.15), we define

diag(P ) =




√
βA2 0 · · · · · · 0

0
√
βA3

. . .
...

...
. . .

. . .
. . .

...

...
. . .

√
βAp 0

0 · · · · · · 0 1√
β
Im




.

In addition, we denote

L =




Im 0 · · · · · · 0

Im Im
. . .

...

...
. . .

. . .
. . .

...

...
. . . Im 0

−Im · · · · · · −Im Im




. (7.17)
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Using these definitions, we have

Q =
[
diag(P )

]T
L
[
diag(P )

]
, D =

[
diag(P )

]T [
diag(P )

]
.

According to (7.16), we need only to solve

LT
[
diag(P )

]
(vk+1 − vk) = α

[
diag(P )

]
(ṽk − vk). (7.18)

In order to start the next iteration, we only need
[
diag(P )

]
vk+1, which is easy to be

obtained by a Gaussian substitution form (7.18). This kind of method is proposed in [20].

• B. S. He, M. Tao and X.M. Yuan, Alternating direction method with

Gaussian back substitution for separable convex programming, SIAM

Journal on Optimization 22(2012), 313-340.

Using the uniform framework, the convergence proof is much simple !

The second choice of Matrix M For the second choice, we decompose Q in form

Q =


 βQ0 0

−A 1
β
I


 .
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Thus, in comparison with the matrix Q in (7.13), we have

Q0 =




AT2 A2 0 · · · 0

AT3 A2 AT3 A3

. . .
...

...
. . .

...

ATpA2 ATpA3 · · · ATpAp




and

A = (A2, A3, . . . , Ap).

In addition, we denote

D0 = diag(AT2 A2, A
T
3 A3, . . . , A

T
pAp).

Thus, by using the notation of D0, we have

QT0 +Q0 = D0 +ATA
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and

QT +Q =


 β(D0 +ATA) −AT

−A 2
β
I


 .

We take the matrix M in the correction step (4.4b) by a ν-dependent matrix

Mν =


 νQ−T0 D0 0

−βA I


 (thus M−1

ν =




1
ν
D−1

0 QT0 0

1
ν
βAD−1

0 QT0 I


) (7.19)

and set α = 1. In other words, the new iterate vk+1 is given by

vk+1 = vk −Mν(vk − ṽk). (7.20)

Now, we check if the convergence conditions (4.5) are satisfied. First,

H = QM−1
ν =


 βQ0 0

−A 1
β
I






1
ν
D−1

0 QT0 0

1
ν
βAD−1

0 QT0 I




=




1
ν
βQ0D

−1
0 QT0 0

0 1
β
I


 ,
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is symmetric and positive definite and the condition (4.5a) is satisfied. Because

MT
ν HMν = QTMν =


 βQT0 −AT

0 1
β
I




 νQ−T0 D0 0

−βA I




=


 β(νD0 +ATA) −AT

−A 1
β
I


 ,

it follows that

G = QT +Q−MT
ν HMν

=


 β(D0 +ATA) −AT

−A 2
β
I


−


 νβD0 + βATA −AT

−A 1
β
I




=


 (1− ν)βD0 0

0 1
β
I


 . (7.21)

For any ν ∈ (0, 1) (resp. ν = 1), G is positive definite (resp. positive semi-definite).
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We call this method Alternating direction method with Gaussian back substitution, because

• The predictor w̃k is obtained via (7.7)-(7.8), in an alternating direction manner;

• In the correction step (7.20),

vk+1 = vk −Mν(vk − ṽk).

Since (see (7.19))

Mν =


 νQ−T0 D0 0

−βA I


 and A = (A2, A3, . . . , Ap),

it follows from (7.8) that

λk+1 = λk − β
(∑p

j=1Aj x̃
k
j − b

)
.

The x-part of the new iterate vk+1 is obtained by

QT0




xk+1
2 − xk2
xk+1

3 − xk3
...

xk+1
p − xkp




= νD0




x̃k2 − xk2
x̃k3 − xk3

...

x̃kp − xkp



. (7.22)
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• QT0 is an upper-triangular matrix, it can be viewed as a Gaussian back substitution.

In practice, to begin the k-th iteration, we need to have (A2xk2 , A3xk3 , . . . , Apx
k
p , λ

k)

(see (7.4) and (7.7)). Thus, in order to begin the next iteration, we need only to get
(A2x

k+1
2 , A3x

k+1
3 , . . . , Apx

k+1
p , λk+1) from (7.22). Because

QT0




xk+1
2 − xk2
xk+1

3 − xk3
...

xk+1
p − xkp




=




AT2 0 · · · 0

0 AT3
. . .

...
...

. . .
. . . 0

0 · · · 0 ATp







I I · · · I

0 I · · · I
...

. . .
. . .

...

0 · · · 0 I







A2(xk+1
2 − xk2)

A3(xk+1
3 − xk3)

...

Ap(xk+1
p − xkp)




and

D0




x̃k2 − xk2
x̃k3 − xk3

...

x̃kp − xkp




=




AT2 0 · · · 0

0 AT3
. . .

...
...

. . .
. . . 0

0 · · · 0 ATp







A2(x̃k2 − xk2)

A3(x̃k3 − xk3)

...

Ap(x̃kp − xkp)



,

we can get (A2x
k+1
2 , A3x

k+1
3 , . . . , Apx

k+1
p ) which satisfies (7.22) via solving the
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following system equations:




I I · · · I

0 I · · · I
...

. . .
. . .

...

0 · · · 0 I







A2(xk+1
2 − xk2)

A3(xk+1
3 − xk3)

...

Ap(x
k+1
p − xkp)




= ν




A2(x̃k2 − xk2)

A3(x̃k3 − xk3)
...

Ap(x̃
k
p − xkp)



. (7.23)

Indeed, (A2x
k+1
2 , A3x

k+1
3 , . . . , Apx

k+1
p ) from (7.23) satisfies the systems of equations

(7.22). The solution of (7.23) can be obtained via the following update form:




A2x
k+1
2

A3x
k+1
3

...

Apx
k+1
p




=




A2x
k
2

A3x
k
3

...

Apx
k
p



− ν




I −I
. . .

. . .

. . . −I
I







A2(xk2 − x̃k2)

A3(xk3 − x̃k3)
...

Ap(x
k
p − x̃kp)



.
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ADMM with Gaussian back substitution
1. Produce a predictor w̃k via (7.7)-(7.8) with given vk = (xk2 , . . . , x

k
p, λ

k),

2. Update the new iterate by vk+1 = vk −Mν(vk − ṽk) (see (7.20))

Theorem 7.1 The sequence {vk}generated by the ADMM (with Gaussian back substi-

tution) satisfies

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗,

where

H =




1
ν
βQ0D

−1
0 QT0 0

0 1
β
I


 and G =


 (1− ν)βD0 0

0 1
β
I


 .

Implementation of the above method for three block problems

Let us see how to implement the methods for the problem with three separable operators

min{θ1(x)+θ2(y)+θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}. (7.24)
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Notice that its Lagrange function is

L(3)(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b),

which defined on Ω := X × Y × Z × <m. The variational inequality VI(Ω, F, θ) is:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω

where

w =




x

y

z

λ



, u =




x

y

z


 , F (w) =




−ATλ
−BTλ
−CTλ

Ax+By + Cz − b



,

θ(u) = θ1(x) + θ2(y) + θ3(z), Ω = X × Y × Z × <m.
The related augmented Lagrangian function is defined by

L[3]
β (x, y, z, λ) = L(3)(x, y, z, λ) +

β

2
‖Ax+By + Cz − b‖2. (7.25)
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Note that the essential variable is v = (y, z, λ), and the prediction (7.7)-(7.8) becomes




x̃k = arg min
{
L[3]
β (x, yk, zk, λk)

∣∣ x ∈ X
}
, (7.26a)

ỹk = arg min
{
L[3]
β (x̃k, y, zk, λk)

∣∣ y ∈ Y
}
, (7.26b)

z̃k = arg min
{
L[3]
β (x̃k, ỹk, z, λk)

∣∣ z ∈ Z
}
, (7.26c)

λ̃k = λk − β(Ax̃k +Byk + Czk − b). (7.26d)

For this special case, the matrix Q in (7.13) has the form

Q =




βBTB 0 0

βCTB βCTC 0

−B −C 1
β
Im


 . (7.27)

We take the second choice of the matrix M (see (7.19)) in the correction step, namely,

Mν =


 νQ−T0 D0 0

−βA I


 .
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Because

Q0 =


BTB 0

CTB CTC


 , and D0 = diag(BTB,CTC),

we obtain

Q−T0 D0 =


 I −(BTB)−1BTC

0 I


 ,

and thus

Mν =




νI −ν(BTB)−1BTC 0

0 νI 0

−βB −βC I


 . (7.28)

The correction is updated by

vk+1 = vk −Mν(vk − ṽk). (7.29)

For the dual variable

λk+1 = λk − [−βB(yk − ỹk)− βC(zk − z̃k) + (λk − λ̃k)].
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Using the definition of λ̃k , we have

−βB(yk − ỹk)− βC(zk − z̃k) + (λk − λ̃k) = β(Ax̃k +Bỹk + Cz̃k − b),

the correction step (7.29) can be written as



Byk+1

Czk+1

λk+1


 :=



Byk

Czk

λk


−




νI −νI 0

0 νI 0

0 0 I






B(yk − yk+1)

C(zk − zk+1)

λk − λk+1


 , (7.30)

where the (yk+1, zk+1, λk+1) in the right hand side is the output of the direct extension

of ADMM (7.5) for the problem with three separate operators (7.24). The details of (7.30) is




Byk+1

Czk+1

λk+1


 :=




(1− ν)Byk + νByk+1 + νC(zk − zk+1)

(1− ν)Czk + νCzk+1

λk+1


 . (7.31)

Recall, for ν = 1, the matrix G in (7.21) is positive semi-definite and the related method

has O(1/t) convergence rate in an ergodic sense.
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7.2 ADMM + Prox-Parallel Splitting ALM

The following splitting method does not need correction. Its k-th iteration begins

with given vk = (xk2 , . . . , x
k
p, λ

k), and obtain vk+1 via the following procedure:





xk+1
1 = arg min

{
L[p]
β (x1, x

k
2 , x

k
3 , . . . , x

k
p, λ

k)
∣∣ x1 ∈ X1

}
,

for i = 2, . . . , p, do :

xk+1
i = arg min

xi∈Xi

{L[p]
β (xk+1

1 , xk2 . . . , x
k
i−1, xi, x

k
i+1, . . . , x

k
p, λ

k)

+ τβ
2 ‖Ai(xi − xki )‖2

}
,

λk+1 = λk − β
(∑p

i=1Aix
k+1
i − b

)
.

(7.32)

• The x2 . . . xp-subproblems are solved in a parallel manner.

• To ensure the convergence, in the xi-subproblem, i = 2, . . . , p, an

extra proximal term τβ
2 ‖Ai(xi − xki )‖2 is necessary.
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An equivalent recursion of (7.32) µ = τ + 1 and τ is given in (7.32).





xk+1
1 = arg min

{
L[p]
β (x1, x

k
2 , x

k
3 , . . . , x

k
p, λ

k)
∣∣ x1 ∈ X1

}
,

λk+ 1
2 = λk − β

(
A1x

k+1
1 +

∑p
i=2Aix

k
i − b

)
,

for i = 2, . . . , p, do :

xk+1
i = arg min




θi(xi)− (λk+ 1

2 )TAixi

+µβ
2 ‖Ai(xi − xki )‖2

∣∣∣∣∣ xi ∈ Xi



 ,

λk+1 = λk − β
(∑p

i=1Aix
k+1
i − b

)
.

(7.33)

The method (7.33) is proposed in IMA Numerical Analysis [21]:

• B. He, M. Tao and X. Yuan, A splitting method for separable convex

programming. IMA J. Numerical Analysis, 31(2015), 394-426.
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Equivalence of (7.32) and (7.33)

It needs only to check the optimization conditions of their xi-subproblems for

i = 2, . . . ,m. Note that the optimal condition of the xi-subproblem of (7.32) is

xk+1
i ∈ Xi, θi(xi)− θi(xk+1

i ) + (xi − xk+1
i )T

{
−ATi λk+

+βATi
[
(A1x

k+1
1 +

∑p
j=2Ajx

k
j − b) +Ai(x

k+1
i − xki )

]

+τβATiAi(x
k+1
i − xki )

}
≥ 0.

for all xi ∈ Xi. By using

λk+ 1
2 = λk − β

(
A1x

k+1
1 +

∑p
j=2Ajx

k
j − b

)
; (7.34)

it can be written as

xk+1
i ∈ Xi, θi(xi)− θi(xk+1

i ) + (xi − xk+1
i )T

{
−ATi λk+ 1

2

+βATiAi(x
k+1
i − xki ) + τβATiAi(x

k+1
i − xki )

}
≥ 0.
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and consequently

xk+1
i ∈ Xi, θi(xi)− θi(xk+1

i ) + (xi − xk+1
i )T

{
−ATi λk+ 1

2

+(1 + τ)βATiAi(x
k+1
i − xki )

}
≥ 0, ∀ xi ∈ Xi. (7.35)

Setting µ = 1 + τ , (7.35) just is the optimal condition of the xi-subproblem of

(7.33). Notice that the

xk+1
1 = arg min{θ1(x1)+

µβ

2
‖A1x1 +(

p∑

i=2

Aix
k
i − b)−

1

β
λk |x1 ∈ X1}

For i = 2, . . . ,m,

xk+1
i = arg min{θi(xi) +

µβ

2
‖Ai(xi − xki )− 1

µβ
λk+ 1

2 ‖2 |xi ∈ Xi}

We use (7.33) to analyze the convergence conditions. By denoting

x̃ki = xk+1
i , i = 1, . . . , p and λ̃k = λk+ 1

2 , (7.36)
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the optimal condition of the xi-subproblems of (7.33) can be written as




θ1(x1)− θ1(x̃k1) + (x1 − x̃k1)T (−AT1 λ̃k) ≥ 0, ∀x1 ∈ X1;

θi(xi)− θi(x̃ki ) + (xi − x̃ki )T
(
−ATi λ̃k + µβATi Ai(x̃

k
i − xki )

)
≥ 0,

∀xi ∈ Xi; i = 2, . . . , p.

(7.37)

Since λ̃k = λk+ 1
2 , we have

λ̃k = λk − β
(
A1x̃

k
1 +

p∑

j=2

Ajx
k
j − b

)

and thus

(

p∑

i=1

Aix̃
k
i − b)−

p∑

j=2

Aj(x̃
k
j − xkj ) +

1

β
(λ̃k − λk) = 0. (7.38)

Combining (7.37) and (7.38) together and using the notations in (7.3), we obtain
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Lemma 7.2 Let wk+1 be generated by (7.33) from the given vector vk and w̃k

be defined by (7.36). Then, we have w̃k ∈ Ω and

θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀ w ∈ Ω,

(7.39)

where

Q =




µβAT2 A2 0 · · · 0 0

0
. . .

. . .
...

...

...
. . .

. . . 0 0

0 · · · 0 µβATpAp 0

−A2 · · · −Ap−1 −Ap 1
β Im




. (7.40)

This is a prediction as described in (4.4a). Here, the matrix Q is not symmetric.
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Since λ̃k = λk − β
(
A1x̃

k
1 +

∑p
j=2Ajx

k
j − b

)
and x̃ki = xk+1

i , we have

λk+1 = λk − β
(∑p

j=1Ajx
k+1
j − b

)

= λk −
[
−β∑p

j=2Aj(x
k
j − x̃kj ) + (λk − λ̃k)

]
(7.41)

Thus, letting

M =




I 0 · · · 0 0

0
. . .

. . .
...

...

...
. . .

. . . 0 0

0 · · · 0 I 0

−βA2 · · · −βAp−1 −βAp Im




, (7.42)
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the vk+1 obtained by (7.33) can be written as

vk+1 = vk −M(vk − ṽk).

Now, we check if the convergence conditions (4.5) is satisfied.

For analysis convenience, we denote

D0 = diag(AT2 A2, A
T
3 A3, . . . , A

T
pAp) (7.43a)

and

A = (A2, A3, . . . , Ap). (7.43b)

Thus the matrix Q in (7.40) and M in (7.42) can be written in compact form,

Q =


 µβD0 0

−A 1
β I


 ,
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and

M =


 I 0

−βA I


 ,

respectively. By a simple manipulation, it shows that

H = QM−1 =


 µβD0 0

−A 1
β I




 I 0

βA I


 =


 µβD0 0

0 1
β I




is positive definite.

For the matrix Q defined in (7.40) and M defined in (7.42), we have

QTM =


 µβD0 −AT

0 1
β I




 I 0

−βA I




=


 µβD0 + βATA −AT

−A 1
β I


 .
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Consequently, we have

G = QT +Q−MTHM = QT +Q−QTM

=


 2µβD0 −AT

−A 2
β I


−


 µD0 + βATA −AT

−A 1
β I




=


 µβD0 − βATA 0

0 1
β I


 :=


 G0 0

0 1
β I


 .

Notice that

G � 0 ⇐⇒ G0 = µβD0 − βATA � 0.

Thus, we need only to check the positivity of G0. Since

D0 = diag(AT2 A2, A
T
3 A3, . . . , A

T
pAp),

and

A = (A2, A3, . . . , Ap),
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by a manipulation, we obtain

G0 = µβD0 − βATA

= β




(µ− 1)AT2 A2 −AT2 A3 · · · −AT2 Ap

−AT3 A2 (µ− 1)AT3 A3
. . .

...

...
. . .

. . . −ATp−1Ap

−ATpA2 · · · −ATpAp−1 (µ− 1)ATpAp




=




AT2

AT3

. . .

ATp



βG0(µ)




A2

A3

. . .

Ap



,
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where G0(µ) is an (m− 1)× (m− 1) blocks matrix

G0(µ) =




(µ− 1)I −I · · · −I

−I (µ− 1)I
. . .

...
...

. . .
. . . −I

−I · · · −I (µ− 1)I




= µ




I
. . .

. . .

I



−




I I · · · I

I I · · · I
...

...
...

I I · · · I




(p− 1)× (p− 1)
blocks

It is clear that Gµ is positive definite if and only if µ > p− 1.

Since τ = µ− 1, the method (7.32) is convergent when τ > p− 2.
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ADMM + Prox-Parallel Splitting ALM
• Produce a predictor wk+1 via (7.33) with given vk = (xk2 , . . . , x

k
p, λ

k),

where µ > p− 1.

Theorem 7.2 The sequence {vk}generated by the ADMM (+Prox-Parallel Split-

ting ALM) satisfies

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗,

where

H =


 µβD0 0

0 1
β I


 , G =


 µβD0 − βATA 0

0 1
β I


 ,

D0 = diag(AT2 A2, A
T
3 A3, . . . , A

T
pAp), A = (A2, A3, . . . , Ap).

Implementation of the method for three block problems
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For the problem with three separable operators

min{θ1(x) + θ2(y) + θ3(z)|Ax+By +Cz = b, x ∈ X , y ∈ Y, z ∈ Z},

we have

L[3]
β (x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT(Ax+By + Cz − b)

+β
2 ‖Ax+By + Cz − b‖2.

For given vk = (yk, zk, λk), by using the method proposed in this subsection,

the new iterate vk+1 = (yk+1, zk+1, λk+1) is obtained via (τ ≥ 1) :




xk+1 = Argmin{L[3]
β (x, yk, zk, λk) |x ∈ X},

yk+1 = Argmin{L3
β(xk+1, y, zk, λk) + τβ

2 ‖B(y − yk)‖2 | y ∈ Y},
zk+1 = Argmin{L[3]

β (xk+1, yk, z, λk) + τβ
2 ‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(7.44)
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An equivalent recursion of (7.44) is




xk+1 = Argmin{L[3]
β (x, yk, zk, λk) |x ∈ X},

λk+ 1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =Argmin{θ2(y)−(λk+ 1
2 )TBy + µβ

2 ‖B(y − yk)‖2 | y ∈ Y},
zk+1 =Argmin{θ3(z)−(λk+ 1

2 )TCz + µβ
2 ‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(7.45)

where µ = τ + 1 ≥ 2. Implementation of (7.45) is via




xk+1 = Argmin{θ1(x) + β
2 ‖Ax+ [Byk + Czk − b− 1

βλ
k]‖2 |x ∈ X},

λk+ 1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =Argmin{θ2(y) + µβ
2 ‖By − [Byk + 1

µβλ
k+ 1

2 ]‖2 | y ∈ Y},
zk+1 =Argmin{θ3(z) + µβ

2 ‖Cz − [Czk + 1
µβλ

k+ 1
2 ]‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).
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This method is accepted by Osher’s research group

• E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for

non-negative matrix factorization and dimensionality reduction on physical

space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.
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A Convex Model for Nonnegative Matrix
Factorization and Dimensionality
Reduction on Physical Space

Ernie Esser, Michael Möller, Stanley Osher, Guillermo Sapiro, Senior Member, IEEE, and Jack Xin

Abstract—A collaborative convex framework for factoring a
data matrix into a nonnegative product , with a sparse
coefficient matrix , is proposed. We restrict the columns of the
dictionary matrix to coincide with certain columns of the data
matrix , thereby guaranteeing a physically meaningful dictio-
nary and dimensionality reduction. We use regularization
to select the dictionary from the data and show that this leads to
an exact convex relaxation of in the case of distinct noise-free
data. We also show how to relax the restriction-to- constraint
by initializing an alternating minimization approach with the
solution of the convex model, obtaining a dictionary close to but
not necessarily in . We focus on applications of the proposed
framework to hyperspectral endmember and abundance identifi-
cation and also show an application to blind source separation of
nuclear magnetic resonance data.

Index Terms—Blind source separation (BSS), dictionary
learning, dimensionality reduction, hyperspectral endmember de-
tection, nonnegative matrix factorization (NMF), subset selection.

I. INTRODUCTION

D IMENSIONALITY reduction has been widely studied in
the signal processing and computational learning com-

munities. One of the major drawbacks of virtually all popular
approaches for dimensionality reduction is the lack of phys-
ical meaning in the reduced dimension space. This significantly
reduces the applicability of such methods. In this paper, we
present a framework for dimensionality reduction, based on ma-
trix factorization and sparsity theory, that uses the data itself
(or small variations from it) for the low-dimensional representa-
tion, thereby guaranteeing physical fidelity. We propose a new
convex method to factor a nonnegative data matrix into a
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product , for which is nonnegative and sparse and the
columns of coincide with columns from the data matrix .
The organization of this paper is as follows. In the remainder

of the introduction, we further explain the problem, summarize
our approach, and discuss applications and related work. In
Section II, we present our proposed convex model for end-
member (dictionary) computation that uses regularization
to select as endmembers a sparse subset of columns of , such
that sparse nonnegative linear combinations of them are capable
of representing all other columns. Section III shows that, in the
case of distinct noise-free data, regularization is an exact
relaxation of the ideal row-0 norm (number of nonzero rows) and
furthermore proves the stability of our method in the noisy case.
Section IV presents numerical results for both synthetic and real
hyperspectral data. In Section V, we present an extension of our
convex endmember detection model that is better able to handle
outliers in the data. We discuss its numerical optimization, com-
pare its performance to the basic model, and also demonstrate
its application to a blind source separation (BSS) problem based
on nuclear magnetic resonance (NMR) spectroscopy data.

A. Summary of the Problem and Geometric Interpretation

The underlying general problem of representing
with 0 is known as nonnegative matrix factorization
(NMF). Variational models for solving NMF problems are typi-
cally nonconvex and are solved by estimating and alternat-
ingly. Although variants of alternating minimization methods
for NMF often produce good results in practice, they are not
guaranteed to converge to a global minimum.
The problem can be greatly simplified by assuming a partial

orthogonality condition on matrix as is done in [1] and [2].
More precisely, the assumption is that, for each row of , there
exists some column such that 0 and for .
Under this assumption, NMF has a simple geometric interpreta-
tion. Not only should the columns of appear in the data up
to scaling but the remaining data should be expressible as non-
negative linear combinations of these columns. Therefore, the
problem of finding is to find columns in , preferably as few
as possible, that span a cone containing the rest of the data .
Fig. 1 illustrates the geometry in three dimensions.
The problem we actually want to solve is more difficult than

NMF in a couple respects. One reason is the need to deal with
noisy data. While NMF by itself is a difficult problem already,
the identification of the vectors becomes even more difficult if
the data contain noise and we need to find a low-dimensional
cone that contains most of the data (see the lower right image in
Fig. 1). Notice that in the noisy case, finding vectors such that all
data are contained in the cone they span would lead to a drastic
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Fig. 4. Spectral signatures of endmembers extracted by different methods. (Top row) Results of our method and the alternating minimization approach. (Bottom
row) Endmembers found by N-findr, QR, and VCA.

Fig. 5. Region of possible values for .

restrict each column to lie in a hockey-puck-shaped disk .
Decompose , where is the orthogonal pro-
jection of onto the line spanned by and is the radial

component of perpendicular to . Then, given ,

we restrict and . The or-
thogonal projection onto this set is straightforward to compute
since it is a box constraint in cylindrical coordinates. This con-
straint set for is shown in Fig. 5 in the case when .
We also allow for a few columns of the data to be outliers.

These are columns of that we do not expect to be well repre-
sented as a small error plus a sparse nonnegative linear com-
bination of other data but that we also do not want to con-
sider as endmembers. Given some , this sparse error
is modeled as with restricted to the convex set

and . Since is the non-
negative region of a weighted ball, the orthogonal projection
onto can be computed with complexity. Here,
since the weights sum to one by definition, can be roughly
interpreted as the fraction of data we expect to be outliers. For
nonoutlier data , we want , and for outlier data, we
want . In the latter outlier case, regularization on matrix

should encourage the corresponding column to be close to
zero; hence, is encouraged to be small rather than close
to one.
Keeping the regularization, the nonnegativity constraint,

and theweighted penalty from (6), the overall extendedmodel
is given by

such that (15)

The structure of this model is similar to the robust principal
component analysis model proposed in [33] although it has a
different noise model and uses regularization instead of the
nuclear norm.

B. Numerical Optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable
and constraint . In addition, let and be Lagrange
multipliers for constraints and

, respectively. Then, the augmented Lagrangian
is given by
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Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to the
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Our new assertion: Solving the problem (7.24).
The parameter τ in (7.44)

• if τ > 0.5, the method is still convergent;

• if τ < 0.5, there is divergent example.

Equivalently the parameter µ in (7.45) :

• if µ > 1.5, the method is still convergent;

• if µ < 1.5, there is divergent example.

For convex optimization prob-
lem (7.24) with three separable
objective functions, the param-
eters in the equivalent methods
(7.44) and (7.45) :

• 0.5 is the threshold factor of
the parameter τ in (7.44) !

• 1.5 is the threshold factor of
the parameter µ in (7.45) !
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8 Self-adaptive gradient descent method for
convex optimization

This section is relatively independent of other sections. Let f : <n → < be a

differentiable function, Ω ⊂ <n be a closed convex set (Ω = <n is the possible

simplest case). Assume that the projection on Ω is easy to be carried out. For

example, Ω = <n, <n+, or Ω is a/box0.

We study the gradient descent method for convex optimization problem

min {f(x) | x ∈ Ω}. (8.1)

The solution set of (8.1) is denoted by Ω∗ and assumed to be non-empty.

According to the analysis in Sect. 1.1, the problem (8.1) is equivalent to finding a

x∗ ∈ Ω, such that

VI(Ω,∇f) x∗ ∈ Ω, (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ Ω. (8.2)
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For the discussion in this section, we need some basic concepts of projection. Let

x∗ be a solution of VI(Ω,∇f), for any given β > 0, we have

x∗ = PΩ[x∗ − β∇f(x∗)].'

&

$

%
HH

HH
HH

HHY

� q
PΩ[x∗ − β∇f(x∗)]x∗

-x∗ − β∇f(x∗)

x ∈ Ω

∇f(x∗)
Ω

Fig. 2.1 x∗ is a solution of VI(Ω,∇f) (8.1) ⇔ x∗ = PΩ[x∗ − β∇f(x∗)]

For given xk and β > 0, we denote

x̃k = PΩ[xk − β∇f(xk)], (8.3)
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which is projection of a given vector [xk − β∇f(xk)] on Ω. In other words,

x̃k = arg min{1

2
‖x− [xk − βk∇f(xk)]‖2 |x ∈ Ω}.

One of the important property of the projection mapping is

(x− PΩ(z))T (z − PΩ(z)) ≤ 0, ∀z ∈ Rn,∀x ∈ Ω. (8.4)'
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q q

q
PΩ(z) - zQ

Q
Q
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Q
QQk
x

x− PΩ(z)

z − PΩ(z)Ω

Fig. 2.2 Geometric interpretation of the inequality (8.4)
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Since x̃k ∈ Ω, according to the definition of the variational inequality formulation

(see (8.2)), for any β > 0, we have

(FI1) (x̃k − x∗)Tβ∇f(x∗) ≥ 0. (8.5)

We call (8.5) the first fundamental inequality.

Notice that x̃k is the projection of xk − β∇f(xk) on Ω and x∗ ∈ Ω.

Set v = xk − β∇f(xk) and u = x∗ in the projection inequality (8.4), since

PΩ(v) = x̃k, we have

(FI2) (x̃k − x∗)T
{

[xk − β∇f(xk)]− x̃k
}
≥ 0. (8.6)

We call (8.6) the second fundamental inequality.
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8.1 Motivation from Projection and Contraction Method

The projection and contraction (P-C) method is an iterative predict-correct (P-C)

method. We say a method is a contractive, if the distance of the iterates {xk} to

the solution set is strictly monotone decreasing.

For given xk, the projection and contraction method offers its predictor x̃k by

x̃k = PΩ[xk − β∇f(xk)].

Let H ∈ <n×n be a symmetric semi-definite matrix. Although the initial purpose

of constructing projection and contraction methods [13, 14, 15] are not for solving

convex quadratic programming

min{1

2
xTHx+ cTx |x ∈ Ω}, (8.7)

we still illustrate our idea with problem (8.7). For the problem (8.7), the
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corresponding linear variational inequality is

x∗ ∈ Ω, (x− x∗)Tβ(Hx∗ + c) ≥ 0, ∀x ∈ Ω. (8.8)

For given xk, the predictor x̃k is given by

x̃k = PΩ[xk − β(Hxk + c)]. (8.9)

8.1.1 Projection and contraction for convex QP

For the linear variational inequality (8.8), the fundamental inequalities (FI1) (8.5)

and (FI2) (8.6) are reduced to





(x̃k − x∗)Tβ(Hx∗ + c) ≥ 0, (FI1)

and

(x̃k − x∗)T
(
[xk − β(Hxk + c)]− x̃k

)
≥ 0, (FI2)

respectively.
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Adding (FI1) and (FI2), we get

{(xk − x∗)− (xk − x̃k)}T {(xk − x̃k)− βH(xk − x∗)} ≥ 0.

Since H is positive semi-definite, from the above inequality, we obtain

(xk − x∗)T (I + βH)(xk − x̃k) ≥ ‖xk − x̃k‖2, ∀x∗ ∈ Ω.

The last inequality can be interpreted as

〈
∇
(1

2
‖x− x∗‖2(I+βH)

)∣∣
x=xk

, (xk − x̃k)
〉
≥ ‖xk − x̃k‖2, ∀x∗ ∈ Ω.

In other words, −(xk − x̃k) is a descent direction of

the unknown distance function 1
2
‖x− x∗‖2

(I+βH) at xk.
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By letting

G = I + βH, (8.10)

we get

(xk − x∗)TG(xk − x̃k) ≥ ‖xk − x̃k‖2, ∀x∗ ∈ Ω∗. (8.11)

The projection and contraction methods requires the sequence

{‖xk − x∗‖2G} to be strictly monotone decreasing. We let

x(α) = xk − α(xk − x̃k), (8.12)

be the new iterate depends the step-size α, and consider the function

ϑ(α) = ‖xk − x∗‖2G − ‖x(α)− x∗‖2G. (8.13)

Using (8.11), it follows that

ϑ(α) = ‖xk − x∗‖2G − ‖xk − x∗ − α(xk − x̃k)‖2G
≥ 2α‖xk − x̃k‖2 − α2‖xk − x̃k‖2G. (8.14)
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In other words, we get a quadratic function

q(α) = 2α‖xk − x̃k‖2 − α2‖xk − x̃k‖2G. (8.15)

which is a low bound of ϑ(α). The function q(α) reaches its maximum at

α∗k =
‖xk − x̃k‖2
‖xk − x̃k‖2G

. (8.16)

In practical computation, we use

xk+1 = xk − γα∗k(xk − x̃k), γ ∈ (0, 2) (8.17)

to produce the new iterate xk+1 (corrector). The sequence {xk} satisfies

‖xk+1 − x∗‖2G ≤ ‖xk − x∗‖2G − q(γα∗)
= ‖xk − x∗‖2G − γ(2− γ)α∗k‖xk − x̃k‖2, (8.18)

where G = I + βH .
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Note that G = (I + βH) and the/optimal step-size0(see (8.16)) is

α∗k =
‖xk − x̃k‖2

(xk − x̃k)T (I + βH)(xk − x̃k)
. (8.19)

O α* γα*

q(α)

ϑ(α)

α

Fig. 2.3 The meaning of the relaxed factor γ ∈ [1, 2)
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The convergence speed is dependent on the parameter β !

Self adaptive gradient descent method for convex QP (8.7).

For a given xk, for the chosen parameter β, the predictor is given by

x̃k = PΩ[xk − β(Hxk + c)].

Additionally, if the condition

(xk − x̃k)T (βH)(xk − x̃k) ≤ ν‖xk − x̃k‖2, ν ∈ (0, 1) (8.20)

is satisfied, then according to (8.19), we have

α∗k ≥
1

1 + ν
>

1

2
.
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Self adaptive gradient descent method for convex QP (8.7).

Then, we can in (8.17) dynamically choose

γk = 1/α∗k, thus 1 < γk ≤ 1 + ν < 2. (8.21)

In this case, γkα
∗
k = 1, the corrector formula (8.17), namely,

xk+1 = xk − γkα∗k(xk − x̃k)

becomes

xk+1 = x̃k = PΩ[xk − β(Hxk + c)]. (8.22)

The contraction inequality (8.18)

‖xk+1 − x∗‖2(I+βkH) ≤ ‖xk − x∗‖2(I+βkH) − (2− γk)‖xk − xk+1‖2

≤ ‖xk − x∗‖2(I+βkH) − (1− ν)‖xk − xk+1‖2.

The last inequality follows from 1− ν ≤ 2− γk (see (8.21), γk ≤ 1 + ν).
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We get a simple projected gradient method, the only condition is

(xk − x̃k)T (βH)(xk − x̃k) ≤ ν‖xk − x̃k‖2, ν ∈ (0, 1). (8.23)

8.1.2 Comparison with the Steepest descent method

How good is the self adaptive gradient descent method discussed in §8.1.1º

When Ω = <n, the problem (8.7) becomes a unconstrained convex quadratic

programming

min{ 1
2x

THx+ cTx}. (8.24)

If we use the steepest descent method to solve (8.24), in k-th step, the iterative

formula is

xk+1 = xk − αSDk (Hxk + c),

where the step-size αSDk =
‖Hxk + c‖2

(Hxk + c)TH(Hxk + c)
.
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If we use the self adaptive gradient descent method discussed in §8.1.1 to solve

(8.24), in k-th step, the iterative formula is

xk+1 = xk − βk(Hxk + c)

where

βk ≤ ν ·
‖Hxk + c‖2

(Hxk + c)TH(Hxk + c)
= ν · αSDk .

In comparison with the steepest descent method, we have

z the same search direction,

z reduced step-size.

What is the different numerical behaviour ?
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Preliminary numerical tests for the problem (8.24)

The Hessian Matrix In the test example, the Hessian matrix is the Hilbert matrix.

H = {hij}, hij =
1

i+ j − 1
, i = 1, · · · , n; j = 1, · · · , n.

n from 100 to 500.

We set

x∗ = (1, 1, . . . , 1)T ∈ Rn and c = −Hx∗.

Different start points:

x0 = 0, x0 = c, or x0 = −c.

Stop criteri0n:

‖Hxk + c‖/‖Hx0 + c‖ ≤ 10−7.

The reduced step size:

β = rαSDk .
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Table 1. Iteration number with different r (r = 1 is the SD method) Start point x0 = 0

n= 0.1 0.3 0.5 0.7 0.8 0.9 0.95 0.99 1.00 1.20

100 2863 1346 853 627 582 437 565 1201 13169 22695
200 3283 1398 923 804 541 669 898 1178 14655 21083
300 3497 1323 856 739 720 568 619 1545 17467 24027
500 3642 1351 1023 773 667 578 836 2024 17757 22750

Start with x0 = 0. Stop with xk . In average: ‖xk − x∗‖/‖x0 − x∗‖ = 3.0e− 3.

Table 2. Iteration number with different r (r = 1 is the SD method) Start point x0 = c

n= 0.1 0.3 0.5 0.7 0.8 0.9 0.95 0.99 1.00 1.2

100 2129 1034 544 424 302 438 568 919 5527 9667
200 1880 808 568 482 372 339 446 713 6625 11023
300 1852 1002 741 531 610 452 450 917 6631 10235
500 2059 939 568 573 379 547 558 874 7739 11269

Start with x0 = c. Stop with xk . In average: ‖xk − x∗‖/‖x0 − x∗‖ = 1.8e− 3.

Table 3. Iteration number with different r (r = 1 is the SD method) Start point x0 = −c
n= 0.1 0.3 0.5 0.7 0.8 0.9 0.95 0.99 1.00 1.2

100 2545 1221 666 591 498 482 638 1581 14442 20380
200 2826 990 874 470 526 455 578 841 15222 18892
300 2891 1299 918 738 549 571 608 2552 18762 21208
500 3158 1769 909 678 506 512 678 1240 17512 19790

Start with x0 = −c. Stop with xk . In average: ‖xk − x∗‖/‖x0 − x∗‖ = 3.8e− 3.
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With the same direction and the reduced step-size, the method is

10∼30 times faster than the Steepest descent method !

r ∈ (0.4, 0.95) is the suitable reduced factor !

What is the findings ? By setting

f(x) =
1

2
xTHx+ cTx

in (8.7), the iterative formula of the self adaptive gradient descent method (8.22)

becomes

xk+1 = PΩ[xk − βk∇f(xk)],

and the strategy for choosing βk (8.20) is (ν ∈ [0.4, 0.95])

(xk − xk+1)Tβk[∇f(xk)−∇f(xk+1)] ≤ ν · ‖xk − xk+1‖2.
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8.2 Projected Gradient Descent (PDG) method for nonlinear

convex optimization

The findings on projection and contraction method for solving the quadratic

programming also contribute to solving the following differentiable convex

optimization problem.

Let Ω be a convex closed set in Rn. The problem concerted in this subsection

is to find x∗ ∈ Ω, such that

(x− x∗)T g(x∗) ≥ 0, ∀ x ∈ Ω, (8.25)

where g(x) is a mapping from Rn into itself. We assume that g(x) is the gradi-

ent of a certain convex function, say f(x), however, f(x) is not provided. Only

for given x, g(x) is observable (sometimes with costly expenses).
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In other words, (8.25) is equivalent to the following convex optimization problem

min {f(x) | x ∈ Ω}. (8.26)

We call (8.26) an oracle convex optimization problem, because only the gradient

information g(x) can be used for solving (8.26). For x∗ ∈ Ω∗, we assume

f(x∗) > −∞.

In addition, we also assume that g(x) is Lipschitz continuous, i.e., there exists a

constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ <n. (8.27)

We require that g(x) is Lipschitz continuous while it does not need to know the

value of L in (8.27).
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The methods presented in this section do not involve the value of f(x), but they

can guarantee that f(xk) is strict monotonically decreasing, hence they belong

to the descending methods.

8.2.1 Steepest descent method for convex programming

Single step projected gradient method.

Step k. (k ≥ 0) Set

xk+1 = PΩ[xk − βkg(xk)], (8.28a)

where the step size βk satisfies the following condition:

(xk − xk+1)T (g(xk)− g(xk+1)) ≤ ν

βk
‖xk − xk+1‖2. (8.28b)

Note that the condition (8.28b) automatically holds when βk ≤ ν/L, where L is
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the Lipschitz modulus of g(x). The reason is

(xk − xk+1)Tβk(g(xk)− g(xk+1))

≤ ‖xk − xk+1‖ · βkL‖xk − xk+1‖ ≤ ν‖xk − xk+1‖2.

8.2.2 Global convergence of the proposed method
In the following, we show an important lemma by using the basic properties of the

projection and convex function.

Lemma 8.1 For given xk, let xk+1 be generated by (8.28a). If the step-size βk
satisfies (8.28b), then we have

(x− xk+1)T g(xk) ≥ 1
βk

(x− xk+1)T (xk − xk+1), ∀x ∈ Ω, (8.29)

and

βk(f(x)− f(xk+1))

≥ (x− xk+1)T (xk − xk+1)− ν‖xk − xk+1‖2, ∀x ∈ Ω. (8.30)
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Proof. Note that xk+1 is the projection of [xk − βkg(xk)] on Ω (see (8.28a)),

according to the projection’s property (8.4), we have

(x− xk+1)T {[xk − βkg(xk)]− xk+1} ≤ 0, ∀x ∈ Ω.

It follows that

(x− xk+1)Tβkg(xk) ≥ (x− xk+1)T (xk − xk+1), ∀x ∈ Ω, (8.31)

and the first assertion (8.29) is proved. Using the convexity of f , we have

f(x) ≥ f(xk) + (x− xk)T g(xk), (8.32)

and

f(xk) ≥ f(xk+1) + (xk − xk+1)T g(xk+1)

= f(xk+1) + (xk − xk+1)T g(xk)

−(xk − xk+1)T
(
g(xk)− g(xk+1)

)

≥ f(xk+1) + (xk − xk+1)T g(xk)− ν

βk
‖xk − xk+1‖2. (8.33)
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The last “ ≥ ” is due to (8.28b). From (8.32) and (8.33), we get

f(x)− f(xk+1)

≥ f(xk) + (x− xk)T g(xk)

−
{
f(xk) + (xk+1 − xk)T g(xk) +

ν

βk
‖xk − xk+1‖2

}

= (x− xk+1)T g(xk)− ν

βk
‖xk − xk+1‖2. (8.34)

Substituting (8.29) in (8.34), we obtain

f(x)− f(xk+1) ≥ 1

βk
(x− xk+1)T (xk − xk+1)− ν

βk
‖xk − xk+1‖2,

and the second assertion of this lemma is proved. 2

The following theorem shows that the projected gradient method (8.28) is a

descent method whose objective function value {f(xk)} is monotonically

decreasing.
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Theorem 8.1 Let {xk} be the sequence generated by the single step projected

gradient method (8.28). Then, we have

f(xk+1) ≤ f(xk)− 1− ν
βk
‖xk − xk+1‖2, (8.35)

and

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2ν)‖xk − xk+1‖2

−2βk(f(xk+1)− f(x∗)). (8.36)

Proof. Setting x = xk in (8.30) in Lemma 8.1, we obtain the assertion (8.35)

immediately. Next, setting x = x∗ in (8.30), we have

βk(f(x∗)− f(xk+1))

≥ (x∗ − xk+1)T (xk − xk+1)− ν‖xk − xk+1‖2,
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and thus

(xk − x∗)T (xk − xk+1)

≥ (1− ν)‖xk − xk+1‖2 + βk(f(xk+1)− f(x∗)).

Using the above inequality, we get

‖xk+1 − x∗‖2

= ‖(xk − x∗)− (xk − xk+1)‖2

= ‖xk − x∗‖2 − 2(xk − x∗)T (xk − xk+1) + ‖xk − xk+1‖2

≤ ‖xk − x∗‖2 − 2(1− ν)‖xk − xk+1‖2

−2βk(f(xk+1)− f(x∗)) + ‖xk − xk+1‖2

= ‖xk − x∗‖2 − (1− 2ν)‖xk − xk+1‖2

−2βk(f(xk+1)− f(x∗)).

This completes the proof of the assertion (8.36). 2

Directly from (8.36), it follows the following corollaryµ
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Corollary 8.1 Let {xk} be the sequence generated by the single step projected

gradient method (8.28). If we set ν ≤ 1
2 , then ‖xk+1 − x∗‖2 < ‖xk − x∗‖2,

for any x∗ ∈ Ω∗. The generated sequence {xk} is in a compact set.

8.2.3 Convergence rate of the proposed method

Below we show that the iteration-complexity of the single projected gradient

method is O(1/k). For the convenience, we assume βk ≡ β.

Theorem 8.2 Let {xk} be generated by the single step projected gradien-

t method (8.28). Then, we have

2kβ(f(xk)− f(x∗))

≤ ‖x0 − x∗‖2 −
k−1∑

l=0

(
(1− 2ν) + 2l(1− ν)

)
‖xl − xl+1‖2.(8.37)
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Proof. First, it follows from (8.36) that, for any x∗ ∈ Ω∗ and all l ≥ 0, we have

2β(f(x∗)−f(xl+1)) ≥ ‖xl+1−x∗‖2−‖xl−x∗‖2+(1−2ν)‖xl−xl+1‖2.

Summing the above inequality over l = 0, . . . , k − 1, we obtain

2β
(
kf(x∗)−

k−1∑

l=0

f(xl+1)
)

≥ ‖xk − x∗‖2 − ‖x0 − x∗‖2 +

k−1∑

l=0

(1− 2ν)‖xl − xl+1‖2.(8.38)

It follows from (8.35) that

2βl
(
f(xl)− f(xl+1)

)
≥ 2l(1− ν)‖xl − xl+1‖2,

which can be rewritten as

2β
(
lf(xl)− (l + 1)f(xl+1) + f(xl+1)

)
≥ 2l(1− ν)‖xl − xl+1‖2.
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Summing the above inequality over l = 0, . . . , k − 1, it follows that

2β

k−1∑

l=0

(
lf(xl)−(l+1)f(xl+1)+f(xl+1)

)
≥
k−1∑

l=0

2l(1−ν)‖xl−xl+1‖2,

which simplifies to

2β
(
−kf(xk) +

k−1∑

l=0

f(xl+1)
)
≥
k−1∑

l=0

2l(1− ν)‖xl − xl+1‖2. (8.39)

Adding (8.38) and (8.39), we get

2kβ
(
f(x∗)− f(xk)

)

≥ −‖x0 − x∗‖2 +
k−1∑

l=0

(
(1− 2ν) + 2l(1− ν)

)
‖xl − xl+1‖2,

which implies (8.37) and the theorem is proved. 2

From (8.37) follows directly the following theorem.
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Theorem 8.3 Let {xk} be generated by the single step projected gradien-
t method. If ν ≤ 1

2 , then we have

f(xk)− f(x∗) ≤ ‖x
0 − x∗‖2
2kβ

, (8.40)

and thus the iteration-complexity of this method is O(1/k).

What is about for any ν ∈ (0.5, 1) ? For such ν, we define

p(ν) = arg min{l | l ≥ 0 is a integer, (1− 2ν) + 2l(1− ν) ≥ 0}. (8.41)

For any ν ∈ (0.5, 1), p(ν) is finite number. For example,we have

ν = 0.9 0.8 0.7 (0.5, 0.7)

p(ν) = 4 2 1 1
.

Since the term
∑k−1
p(ν)

(
(1− 2ν) + 2l(1− ν)

)
‖xl − xl+1‖2 is positive, it
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follows from Theorem 8.2 (see(8.37)) that

2kβ(f(xk)−f(x∗)) ≤ ‖x0−x∗‖2−
p(ν)−1∑

l=0

(
(1−2ν)+2l(1−ν)

)
‖xl−xl+1‖2.

The last inequality implies that limk→∞(f(xk)− f(x∗)) = 0 and the

iteration-complexity of this method is O(1/k) for any ν ∈ (0, 1).

Theorem 8.4 Let {xk} be generated by the single step projected gradien-

t method, then we have

f(xk)− f(x∗) ≤ ‖x
0 − x∗‖2 +D

2kβ
, (8.42)

where

D = −
p(ν)−1∑

l=0

(
(1− 2ν) + 2l(1− ν)

)
‖xl − xl+1‖2.

and p(ν) is a finite integer defined in (8.41).
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Self-adaptive projected gradient descent method

Self-adaptive projected gradient descent method.

Set β0 = 1, µ = 0.5, ν = 0.9, x0 ∈ Ω and k = 0. Provide g(x0).

For k = 0, 1, . . ., if the stopping criterium is not satisfied, do

Step 1. x̃k = PΩ[xk − βkg(xk)],

rk = βk‖g(xk)− g(x̃k)‖/‖xk − x̃k‖.
while rk > ν

βk := βk ∗ 0.8/rk,

x̃k = PΩ[xk − βkg(xk)],

rk = βk‖g(xk)− g(x̃k)‖/‖xk − x̃k‖.
end(while)

xk+1 = x̃k,

g(xk+1) = g(x̃k).

If rk ≤ µ then βk := βk ∗ 1.5, end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.
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Remark 8.1 Instead of the condition (8.28b), here we have

βk‖g(xk)− g(xk+1)‖ ≤ ν‖xk − xk+1‖.

Remark 8.2 If rk ≤ ν, we direct take xk+1 = x̃k, and g(xk+1) = g(x̃k) for

the next iteration. We call the method Self-adaptive single step projected gradient

method because it needs only once evaluation of the gradient g(xk) in each

iteration when adjusting the parameter βk is not necessary.

Remark 8.3 If rk > ν, we adjust the parameter βk by βk := βk ∗ 0.8/rk.

According to our limited numerical experiments, using the reduced βk, the

condition rk ≤ ν is satisfied.

Remark 8.4 Too small step size βk will leads to slow convergence. If rk ≤ µ,

we will enlarge the trial step size β for the by βk := βk ∗ 1.5.

101



207

9 Conclusions and Remarks

9.1 ADMM vs AMA

The mathematical form of the linearly constrained convex optimization problem

min {θ(u) | Au = b, u ∈ U}. (9.1)

The penalty function method (PFM) for solving the problem (9.1)

uk+1 =Argmin
{
θ(u) + βk

2
‖Au− b‖2

∣∣u ∈ U
}

Augmented Lagrangian Method (ALM) for solving the problem (9.1)

λk is given

uk+1 =Argmin
{
θ(u)− (λk)T (Au− b) + β

2
‖Au− b‖2

∣∣x ∈ X
}
,

λk+1 = λk − β(Auk+1 − b).
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Our objective is to solve the following separable convex optimization problem

min {θ1(x) + θ2(y) |Ax+By = b, x ∈ X , y ∈ Y} (9.2)

Applied the penalty function method for solving Problem (9.2)

(xk+1, yk+1)=Argmin
{
θ1(x) + θ2(y) +

βk
2
‖Ax+By − b‖2

∣∣x ∈ X , y ∈ Y
}

Applied ALM to solve the problem (9.2) The k-th iteration begins with λk

(xk+1, yk+1)=Argmin




θ1(x) + θ2(y)− (λk)T (Ax+By − b)

+β
2
‖Ax+By − b‖2

∣∣∣∣∣
x ∈ X
y ∈ Y





λk+1 = λk − β(Axk+1 +Byk+1 − b).
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Two kinds of different methods. The difficulties of their subproblems are equal.

It is well known: ALM is much efficient than the penalty function method.

See J. Nocedal and S. J. Wright: Numerical Optimization

The common disadvantage of both methods when they applied to solve (9.2)µ

z The methods do not use the separable structure of the problem (9.2).

Either ALM or the penalty function methods, their subproblem involves the both

variables x and y. Sometimes we have no way to solve such subproblems.

Relaxed versions: Relax one of the variables as the known vector

• Relaxed penalty function method (PFM) for the problem (9.2)

— Alternating Minimization Algorithm (AMA).

• Relaxed augmented Lagrangian method (ALM) for the problem (9.2)

— Alternating Direction Method of Multipliers (ADMM).
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Applying Alternating Minimization Algorithm (AMA) for the problem (9.2)

The k-th iteration begins with given yk ,

xk+1 =Argmin
{
θ1(x) + β

2
‖Ax+Byk − b‖2

∣∣x ∈ X
}
,

yk+1 =Argmin
{
θ2(y) + β

2
‖Axk+1 +By − b‖2

∣∣y ∈ Y
}
.

Applying Alternating Direction Method of Multipliers (ADMM) for (9.2)

The k-th iteration begins with given (yk, λk),

xk+1 = Argmin
{
θ1(x)− (λk)TAx+ β

2
‖Ax+Byk − b‖2

∣∣x ∈ X
}
,

yk+1 = Argmin
{
θ2(y)− (λk)TBy + β

2
‖Axk+1 +By − b‖2

∣∣ y ∈ Y
}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b).

ALM is better than PFM⇒ Their relaxed versions ADMM is better than AMA
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9.2 Developments of ADMM for two-block problems

1. ADMM in sense of PPA The k-th iteration begins with given (yk, λk)









xk+1 = Argmin{L[p]
β (x, yk, λk) |x ∈ X},

λk+1 = λk − β(Axk+1 +Byk − b),
yk+1 = Argmin{L[p]

β (xk+1, y, λk+1) | y ∈ Y},
(9.3a)





yk+1 := yk − γ(yk − yk+1),

λk+1 := λk − γ(λk − λk+1).
(Extended) (9.3b)

The formula (9.3a) is obtained by changing the order of y and λ in the classical

ADMM. The notation “ := ” in (9.3b) means that the (yk+1, λk+1) in the right

hand side of (9.3b) is the output of (9.3a). γ ∈ [1, 2) is the extended factor.

• X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point algorithms revisit
on the alternating direction method of multipliers, Science China Math, 56
(2013), 2179-2186.
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2. Symmetric ADMM

The primal variables x and y are essentially equal, so it is recommended to adopt

the symmetrical alternating direction method of multipliers.

Symmetric Alternating Direction Method of Multipliers

The k-th iteration begins with given (yk, λk),




xk+1 = Argmin{L[p]
β (x, yk, λk) |x ∈ X},

λk+ 1
2 = λk − µβ(Axk+1 +Byk − b),

yk+1 = Argmin{L[p]
β (xk+1, y, λk+ 1

2 ) | y ∈ Y},

λk+1 = λk+ 1
2 − µβ(Axk+1 +Byk+1 − b),

(9.4)

wehre µ ∈ (0, 1) (usually µ = 0.9).

• B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive Peaceman-
Rachford splitting method for convex programming, SIAM Journal on
Optimization, 24 (2014), 1011-1040.
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9.3 Multi-block separable convex optimization
We take the three-block separable convex optimization problem as an example

min{θ1(x) + θ2(y) + θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}. (9.5)

Its augmented Lagrangian function is

L3
β(x, y, z, λ) = θ1(x)+θ2(y)+θ3(z)−λT (Ax+By+Cz−b)+β

2
‖Ax+By+Cz−b‖2.





xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

yk+1 = arg min
{
L3
β(xk+1, y, zk, λk)

∣∣ y ∈ Y
}
,

zk+1 = arg min
{
L3
β(xk+1, yk+1, z, λk)

∣∣ z ∈ Z
}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(9.6)

The above formula is the direct extension of ADMM for the three-block separable convex

optimization problem (9.5). Unfortunately, it is not necessarily convergent [6].

• C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM

for multi-block convex minimization problems is not necessarily convergent,

Mathematical Programming, 155 (2016) 57-79.
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Direct extension of ADMM. The main example in our Math. Prog. Paper [6]:

min{θ1(x) + θ2(y) + θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}

where θ1(x) = θ2(y) = θ3(z) = 0, X = Y = Z = <, b = 0 ∈ <3.

[A,B,C] =




1 1 1

1 1 2

1 2 2


 .

Applied the direct extension of ADMM
(9.6) to this example, the method is not
convergent. However, this exmple have
only theoretical meaning.

It is worth to consider a class of three-block problem whose constrained matrix

[A,B,C] = [A,B, I] one of the submatrix is identity.

It is convergent when the direct extension of ADMM is applied to solve such more

practical problems ? It is a challenging open problem !

Neither convergence nor counterexamples have been provided ������
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It is valuable to study a class of the following problems :

• Applying ADMM to the problem

min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y} is convergent.

• Change the equality to inequality, the considered problem becomes

min{θ1(x) + θ2(y)|Ax+By ≤ b, x ∈ X , y ∈ Y}.

• Reconvert it to a equality constrained special three-block problem:

min{θ1(x) + θ2(y) + 0 |Ax+By + z = b, x ∈ X , y ∈ Y, z ≥ 0}
• Peoples have tried to solve the above problems with direct extended ADMM,

but so far neither convergence nor counterexamples have been proved.

Based on the above recognition, we propose some modified algorithms for the
three operator problem. Our method does not add any conditions to the problem!
No restrictions on Operate only on the method itself�
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ADMM Like-Method IµµµPartial parallel Splitting ALM with reduced step-size

Begin with (yk, zk, λk), after solving the x-subproblem, we solve the y and
z-subproblems in parallel.





xk+ 1
2 = arg min

{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

yk+ 1
2 = arg min

{
L3
β(xk+ 1

2 , y, zk, λk)
∣∣y ∈ Y

}
,

zk+ 1
2 = arg min

{
L3
β(xk+ 1

2 , yk, z, λk)
∣∣z ∈ Z

}
,

λk+ 1
2 = λk − β(Axk+ 1

2 +Byk+ 1
2 + Czk+ 1

2 − b).

(9.7)

The output (yk+ 1
2 , zk+ 1

2 , λk+ 1
2 ) is a predictor, the new iterate is given by




yk+1

zk+1

λk+1


 =




yk

zk

λk


− α




yk − yk+ 1
2

zk − zk+ 1
2

λk − λk+ 1
2


 , α ∈ (0, 2−

√
2).

• B. S. He, Parallel splitting augmented Lagrangian methods for monotone

structured variational inequalities, COA 42(2009), 195–212.

It is too free to deal with problems, thus, reducing the step length is necessary !
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ADMM Like-Method IIµµµADMM with Gaussian back substitution

Taking the output of (9.6) as the predict point. We need only to correct the

(y, z)-parts by
(
yk+1

zk+1

)
:=

(
yk

zk

)
− α

(
I −(BTB)−1BTC

0 I

)(
yk − yk+1

zk − zk+1

)
.

where α ∈ (0, 1). Because we just need to provide (Byk+1, Czk+1, λk+1) for

the next iteration,
(
Byk+1

Czk+1

)
:=

(
Byk

Czk

)
− α

(
I −I
0 I

)(
B(yk − yk+1)

C(zk − zk+1)

)
. (9.8)

• B. S. He, M. Tao and X.M. Yuan, Alternating direction method with Gaussian

back substitution for separable convex programming, SIAM Journal on

Optimization 22 (2012), 313-340.

There is priority or unfairness in (9.6) for the essential primal variables y and z
(resp. By and Cz). Thus, it is necessary to make up some adjustment !
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ADMM Like-Method IIIµµµADMM+Prox-Parallel Splitting ALM

After solving the x-subproblem, we solve the y and z-subproblems in parallel.

Since we don’t want to do post-processing (correction), adding a regular term to

both of the y and z-subproblems in advance is necessary




xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X
}
,

yk+1 = arg min
{
L3
β(xk+1, y, zk, λk) + τ

2β‖B(y − yk)‖2
∣∣y ∈ Y

}
,

zk+1 = arg min
{
L3
β(xk+1, yk, z, λk) + τ

2β‖C(z − zk)‖2
∣∣z ∈ Z

}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b). (τ ≥ 1)

• B. He, M. Tao and X. Yuan, A splitting method for separable convex

programming. IMA J. Numerical Analysis, 31 (2015), 394-426.

If you are too free and don’t correct, adding the regular terms is necessary !
This can be explained as: people should not forget what they promised yesterday!
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¦)�5�åà`z§O2.�KF¦f{ (ALM)`uv¼ê�
{§k:`zÄ:�£�<Ñ��"

éü��©l�f��5�åà`z¯K§O2.�KF¦f{

(ALM)Úv¼ê�{,tµ�©O¤
¦f�O��{ (ADMM)Ú
�O4�z�{ (AMA)"

<�Ïdkndé ADMM�	'%"

ADMMØ´·�JÑ5�"k
 10cÝKÂ �{�ïÄ�Ä

:,¦�·é ADMMa�{�	a,�"�+Æ)éADMM�{
��
kd��U?Úy²�
­��nØ(J§B^n¤Ù"
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�{þ§��
�©Cþ yÚéóCþ�gS§?
��ÏI½�

� PPA¿Âe� ADMM (Science in China, Mathematics, 2013)¶

²�é��©Cþ xÚ y§üg��éóCþ�§Ò��é¡.

� ADMM (SIAM Optimization, 2014)"

ù
�{§�nþUÕ4�§O�Ly�Ø�"

nØþ§·�y²
 ADMM3H{¿Âe (SIAM Numerical Anal-
ysis§2012)Ú:�¿Âe(Numer. Mathematik, 2015)� O(1/t)

�Âñ�Ç.y²ÑØE,.

ADMM�2�A^§<�g,���n��f�¯Kí2"
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·�3ØUy²/��í2��{0Âñ��ÿ§JÑ
�
?n

õ��f¯K�ADMMa�{

(Computational Optimization and Applications, 2009).

(SIAM Optimization, 2012; IMA Numerical Analysis, 2015).

ù
�{��ÓA:´ØI�é¯K\?Û^��é β Ø\��,

�é�{ÄÃâ�

�5·�q�Ñ/��í2�ADMM�{?nn��f¯KØ�y

Âñ0�~f(Math. Progr., 2016),`²:

±cJÑ��
üÑ§Ããþ´7L�§Å�þ�´Ün�"
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• The analysis is guided by variational inequality.

• The most methods mentioned fall in a unified prediction-correction framework,

in which the convergence analysis is quite simple.

• All the discussed methods are closed related to Proximal Point Algorithms.

• All the discussed ADMM-like splitting methods are rooted from Augmented

Lagrangian Method.

• A through reading will acquaint you with the ADMM, while a more carefully

reading may make you familiar with the tricks on constructing splitting

methods according to the problem you met.

• The discussed first order splitting contraction methods are only appropriate

for some structured convex optimization in some practical applications.
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z VI is a powerful tool to analyze the splitting contraction algorithm of convex
optimization It is very simple to prove the convergence in the framework of varia-
tional inequality.
z This picture shows that we can use a small space on the blackboard The origin
and development of the alternating direction method of multipliers and the proof
of convergence are all clear
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Appendix: From PC Methods for VI to SC Methods for Convex Optimization

A1. Projection and contraction method for monotone variational inequality

Let Ω ⊂ <n be a nonempty closed convex set, F : <n → <n be a mapping. Consider

the following variational inequality:

u∗ ∈ Ω, (u− u∗)>F (u∗) ≥ 0, ∀u ∈ Ω. (A1.1)

We say a variational inequality is monotone, when

(u− v)>(F (u)− F (v)) ≥ 0.

For solving the problem (A1.1), the k-th iteration of the projection and contraction begins

with a given uk , produces a predictor ũk via the projection

ũk = PΩ[uk − βkF (uk)]

= arg min
{

1
2
‖u− [uk − βkF (uk)]‖2 |u ∈ Ω

}
. (A1.2)

In the projection (A1.2), the chosen parameter βk satisfies

βk‖F (uk)− F (ũk)‖ ≤ ν‖uk − ũk‖, ν ∈ (0, 1). (A1.3)
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Because ũk = arg min
{

1
2
‖u− [uk − βkF (uk)]‖2 |u ∈ Ω

}
, according to Lemma

1.1, we have

ũk ∈ Ω, (u− ũk)>{ũk − [uk − βkF (uk)]} ≥ 0, ∀u ∈ Ω. (A1.4)

Let d(uk, ũk) = (uk − ũk)− βk[F (uk)− F (ũk)]. (A1.5)

Adding the term (u− ũk)>d(uk, ũk) to the both sides of (A1.4), we get the ũk based

prediction formula

Prediction:

ũk ∈ Ω, (u− ũk)>βkF (ũk) ≥ (u− ũk)>d(uk, ũk), ∀u ∈ Ω. (A1.6)

Setting u = u∗ in (A1.6), we get

(ũk − u∗)>d(uk, ũk) ≥ βk(ũk − u∗)>F (ũk). (A1.7)

Due to the monotonicity of F , (ũk − u∗)>F (ũk) ≥ (ũk − u∗)>F (u∗). Since

ũk ∈ Ω, according to (A1.1), (ũk − u∗)>F (u∗) ≥ 0. Thus, the right hand side of

(A1.7) is nonnegative. Consequently, we have
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(uk − u∗)>d(uk, ũk) ≥ (uk − ũk)>d(uk, ũk). (A1.8)

According to the expression of d(uk, ũk) (A1.5) and the assumption (A1.3), by using the

Cauchy-Schwarz inequality, we get

(uk − ũk)>d(uk, ũk) ≥ (1− ν)‖uk − ũk‖2. (A1.9)

Therefore, the right hand side of the inequality (A1.8) is positive. This means, for any

positive definite matrix H ∈ <n×n, H−1d(uk, ũk) is an ascent direction of the

unknown distance function 1
2
‖u− u∗‖2H at uk . By using

Coirrection uk+1
α = uk − αH−1d(uk, ũk), (A1.10)

we get a new iterate which is more closed to the solution set in H-norm, where d(uk, ũk)

is given by (A1.5). Consider the α-dependent profit

ϑk(α) := ‖uk − u∗‖2H − ‖uk+1
α − u∗‖2H . (A1.11)
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According to (A1.10) and (A1.8), we get

ϑk(α) = ‖uk − u∗‖2H − ‖uk − u∗ − αH−1d(uk, ũk)‖2H
= 2α(uk − u∗)>d(uk, ũk)− α2‖H−1d(uk, ũk)‖2H

(A1.8)

≥ 2α(uk − ũk)>d(uk, ũk)− α2‖H−1d(uk, ũk)‖2H
=: qk(α). (A1.12)

The last inequality tells us that qk(α) is a low bound of ϑk(α).

Usually, we consider the projection and contraction method in the Euclidean-norm. In this

case, H = I and q(α) reaches its maximum at

α∗k = argmax{qk(α)} =
(uk − ũk)>d(uk, ũk)

‖d(uk, ũk)‖2 . (A1.13)

From the assumption (A1.3), we get 2(uk − ũk)>d(uk, ũk)− ‖d(uk, ũk)‖2 > 0 and

thus α∗k >
1
2

.

‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ≥ q(α∗k)

= α∗k(uk − ũk)>d(uk, ũk)
(A1.9)

≥ 1
2
(1− ν)‖uk − ũk‖2.
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In this way, we get the following key-inequality for convergence proof of the PC method:

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 1
2
(1− ν)‖uk − ũk‖2. (A1.14)

z In PC methods, the directions in the left and right hand sides of (A1.6)

βkF (ũk) and d(uk, ũk) are called a pair of twin directions.

It is very interesting that two different correction methods with twin directions and same

step length have the common contraction inequality for convergence.

In practical computation, we use correction formula

(PC-Method I) uk+1
I = uk − γα∗kd(uk, ũk) (A1.15)

or

(PC Method II) uk+1
II = PΩ[uk − γα∗kβkF (ũk)] (A1.16)

to offer the new iterate uk+1, where γ ∈ (1.5, 1.8) ⊂ (0, 2), α∗k is given by(A1.13).

z The detailed proof can be found in the series of Lecture 3 on my Homepage z
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A2. Splitting-contraction (SC) methods for linearly constrained convex optimization

The linearly constrained separable convex optimization problems, as illustrated in Section

1.2, can be translated to the following variational inequality

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)>F (w∗) ≥ 0, ∀w ∈ Ω. (A2.1)

In (A2.1), the function θ(u) is convex and the mapping F (w) is also monotone, specially,

(w − w̃)>(F (w)− F (w̃)) ≡ 0.

For solving such variational inequality (A2.1), we have a unified framework of the

prediction-correction methods.

Prediction. For given vk (v involves some (or total) elements of the vector w), produce

a w̃k ∈ Ω which satisfies

θ(u)− θ(ũk) + (w− w̃k)>F (w̃k) ≥ (v− ṽk)>Q(vk− ṽk), ∀w ∈ Ω, (A2.2)

where Q is not necessarily symmetric, but Q> +Q is essentially positive definite.
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The inequality (A2.2) is similar as (A1.6). Set w = w∗ in (A2.2), we get

(ṽk − v∗)>Q(vk − ũk) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)>F (w̃k). (A2.3)

Because (w̃k − w∗)>{F (w̃k)− F (w∗)} = 0, we have

θ(ũk)− θ(u∗) + (w̃k − w∗)>F (w̃k) = θ(ũk)− θ(u∗) + (w̃k − w∗)>F (w∗).

Since w̃k ∈ Ω, it follows from (A2.1) that

θ(ũk)− θ(u∗) + (w̃k − w∗)>F (w∗) ≥ 0,

Thus, the right hand side of (A2.3) is nonnegative. Consequently, we get

(vk − v∗)>Q(vk − ṽk) ≥ (vk − ṽk)>Q(vk − ṽk). (A2.4)

The inequality (A2.4) is similar as (A1.8). Since Q>+Q is essential positive definite, the

right hand side of (A2.4) is positive (otherwise, w̃k is a solution).

Thus, for any positive definite matrix H , H−1Q(vk − ṽk) is an ascent direction of the

unknown distance function 1
2
‖v − v∗‖2H at vk . By using

vk+1 = vk − αH−1Q(vk − ṽk), (A2.5)
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we get a new iterate which is more closed to V∗ in H-norm, where Q(vk − ũk) is given

in the right hand side of (A2.2). Let

M = H−1Q, (A2.6)

the correction formula becomes

Correction vk+1
α = vk − αM(vk − ṽk). (A2.7)

Consider the α-dependent profit

ϑk(α) := ‖vk − v∗‖2H − ‖vk+1 − v∗‖2H . (A2.8)

Thus, we have

ϑk(α) = ‖vk − v∗‖2H − ‖vk − v∗ − αM(vk − ṽk)‖2H
= 2α(vk − v∗)>Q(vk − ṽk)− α2‖M(vk − ṽk)‖2H

(A2.4)

≥ 2α(vk − ṽk)>Q(vk − ṽk)− α2‖M(vk − ṽk)‖2H
=: qk(α) (A2.9)
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Now, qk(α) is a low bound of ϑk(α) and it reaches its maximum at

α∗k = argmax{qk(α)} =
(vk − ṽk)>Q(vk − ṽk)

‖M(vk − ṽk)‖2H
. (A2.10)

Moreover, if the matrices satisfy

G = Q> +Q−M>HM � 0, (A2.11)

it is easy to see that

2(vk − ṽk)>Q(vk − ṽk)

= (vk − ṽk)>(Q> +Q)(vk − ṽk)

> ‖M(vk − ṽk)‖2H . (A2.12)

Together with (A2.10), we have α∗k >
1
2

. Consequently, it follows that

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H
≥ q(α∗k) = α∗k(vk − ṽk)>Q(vk − ṽk)

>
1

4
‖vk − ṽk‖2(QT+Q). (A2.13)
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In other words, if the assumption (A2.11) is satisfied, we can take the unit step sizeα = 1

in (4.4b). In other words, the correction formula becomes

vk+1 = vk −M(vk − ṽk).

It follows from (A2.9) that q(1) = ‖vk − ṽk‖2G. Thus, the generated sequence {vk}
has the contraction property

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G,

which is the key-inequality for convergence analysis of the proposed methods.

From the projection and contraction method for monotone variational inequality, to the

splitting-contraction methods for linearly constrained convex optimization, it obeys

z one main line, a common model. z
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— Stefan Banach, 1892–1945
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Thank you very much for reading !
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