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A function f () is convex iff
f(1=0)z+0y) < (1-0)f(2)+0/(y)
Ve € [0, 1].

Properties of convex function

o f c(Cl. fisconvexiff

fy) = flx) > V() (y — ).

Thus, we have also

flx) = fly) = VI (z—y).

e Adding above two inequalities, we get

(y— )" (Vf(y) — V(=) >0.

o f€Cl Vfismonotone. [ € C? V?f(x)is positive semi-definite.

., |
|

F@)+V () (v- .1;?)“\

Convex function

e Any local minimum of a convex function is a global minimum.
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min 6(x)
st A« =b  (1.1)
rec X




Image deblurring I Blurry can be produced by

defocus the camera’s lens, the moving object, turbulence in the air, - - -
Notations: g — observation, f — ideal image;
U — restriction on pixels, e.g., U = {u | 0 < u < 255}
g = Hf, H — blur matrix .

original image blurred image restored image



Image inpainting I

Some pixels are missing in image. Partial information of image is available

g=_5f, S — mask (missing pixels)

Model
L—' min {|Vf|; | St=g, fel}

Sadﬂle-yumt pu:ﬂblem

original image missing pixel image restored image



Image zooming and super-resolution I

Produce a high-resolution (HR) image by its low-resolution (LR) image(s)

g =Df, f—HRimage, g— LRimage, D — down-sampling

MOde" min {||Vf|y | Df =g, felU}




Magnetic resonance imaging (MRI) I

Reconstruct a medical image by sampling its Fourier coefficients partially

Fg = PFf, P — sampling mask, F — Fourier transform

Model' min {||Vf||; | PFf = Fg}

medical image sampling mask reconstruction
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Image decomposition I

Separate the sketch (cartoon) and oscillating component (texture) of image

f =u+ v, u— cartoon part, v — texture part

o | ut+v=r~}

original image cartoon part texture part



Background extraction of surveillance video (I) I

Considering the foreground object detection in complex environments and extract
the background in surveillance video

D=X+Y, D —original video, X — background, Y — foreground

Model | min {||X|. +r|Y[: | X +Y =D}

original video foreground background

11
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Image denoising

Pixels are perturbed by a whole range of external and unwanted disturbances

Model '

min {||V]y + 3[f — g]3} < min {[yli + £ - g3 | VE—y =0},
f -~ = — : Hadls I P

g =1f + noise

original image noised image restored image



1.3 A B BRI GRLn)

We take the problem with three separable
objective functions as an example.

13
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Background extraction of surveillance video (ll) I

The original surveillance video has missing information and additive noise
Po(D) = Po(X + Y )+noise

Pq — indicating missing data, Z — noise/outliers

observed video foreground background
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Image decomposition with degradations IThe target image for

decomposition contains degradations, e.g., blur, missing pixels, - - -

f = K(u-+divv)+ 2z, K — degradation operator, z— noise/outlier

Model '

mln{HVqu + 7| V]|oo + HZH2 | K(u-+divv)

target image cartoon texture




2 Optimization problem and VI

2.1 Differential convex optimization in Form of VI

Let {2 C R", we consider the convex minimization problem

min{ f(x) | z € Q}. (2.1)

What is the first-order optimal condition ? '

x* € < z € ()and any feasible direction is not descent direction.

Optimal condition in variational inequality form '

o Sy(z*) ={s e R" | sTVf(z*) <0} = Setofthe descent directions.

o Si(x*) ={seR" | s=x—2a* z €} = Setoffeasible directions.

*eQ* & 2*eQ and S¢(z*)NSy(z*) = 0.

FEFIELLFE LT ENZ: FrERTHREESABE EAGE
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The optimal condition can be presented in a variational inequality (VI) form:
e Q, (x—z)'F(z*) >0, Vreq, (2.2)

where F'(z) = V f(x).

/ x € 2 \

A
8

Y

®

Fig. 1.1 Differential Convex Optimization and VI

Since f(x) is a convex function, we have

f(y) = f(2)+Vf(2)" (y—=) andthus (z—y)" (V[(z)-V[(y)) = 0.

We say the gradient V f of the convex function f is a monotone operator.



BRHENFZRAINAEZRF TERETHRSFN—151E

min{f(z)|lr € X}, z*e X, O(x) —0(x*) >0, Ve X;

min{ f(z)|lz € X}, 2*e X, (x—2*)!Vf(z*) >0, VreX.

- U EREERNOUUERMAMESE MBERRZEASE TERSEE:

Lemma 1 Let X C R" be a closed convex set, 0(x) and f(x) be convex func-
tions and f(x) is differentiable. Assume that the solution set of the minimization
problem min{f(x) + f(x) |x € X'} is nonempty. Then,

r* € argmin{f(z) + f(x) |x € X'} (2.3a)

if and only if

v c X, O(x) —0(z*) + (xr —2*)'Vf(z*) >0, Vz € X. (2.3b)

18



2.2 Min-Max Problem

The min-max problem has the following mathematical form
mingcy max,cy ®(z,y) := 01(z) — y'Ax — 02(y), (2.4)

where A € R"™*™, 01 (x) : R" — R, O2(y) : R™ — R are convex functions.
Let (x*, y™) be the solution of (2.4), then we have

e X, ®(x,y")—P(z",y") >0, Ve e X, (2.5a)
{ y el, ", y*)—P(z*,y) >0, Vye ). (2.5b)
Using the notation of ®(x, y), it can be written as
z* e X, O1(x)—01(z*) + (xz — 2" (—ATy*) >0, VzecX,
{y* €Y, b2(y) —0(y*) + (y—y")'(Az") >0, Vyel.
It can be written as a variational inequality: u € €2,

O(u) — O0(u*) + (u —u*) ' F(u*) >0, Yu € Q, (2.6)

19



where

u:(x>,@wy:m@»+%@% FW%=<iﬁp)

Y

and Q = X x ).
If 01(x) and O2(y) are differentiable, by setting V01 (x) = f(x), VO2(y) = g(y),

the solution of (2.4) should satisfy

{x*ex, (@ —z")"(f(z") — ATy") >0, VzeX,
v ey, (w-y)' (gly")+Az*) >0, Vye.

The compact form of the above variational inequality can be written as

weQ, (u—u)"F) >0, Yue

Fo= (434 ) = () (0 77)(6)

where

20



2.3 Linearly constrained Optimization in form of VI

We consider the linearly constrained convex optimization problem

min{f(u) | Au=b, u € U}.

The Lagrange function of (2.7) is

L(u,\) = 0(u) — M (Au — b),

(u, A) e x R™.

Saddle point

(2.7)

(2.8)

21
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A pair of (u*, \*) is called a saddle point if
Lyepm (u™, A) < L(u*, \*) < Lycy(u, A").
The above inequalities can be written as

u"el, L(u,\")—Lu*,\*)>0, Yuel, (2.9a)
A e A, L{w \)—Lu",\) >0, VXeA. (2.9b)

According to the definition of L(u, \) (see(2.8)),
L(u, \*) — L(u™, \)
= [0(u) — (V)" (Au = D)] = [0(u") — (A*)" (Au* —D)]
= O(u) —O(u*) + (u —u*)T (—AT )

it follows from (2.9a) that

w e, Ou) —0u*) + (u—u")'(=ATN) >0, Yueld. (2.10)
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Similarly, for (2.9b), since
L(u*, \") — L(u™, \)

= [0(u*) = (M) (Au* = b)] = [0(u*) — (N)" (Au* —b)]
= (A=2)T(Au* - ),

we have

AeR™ (A=) (Au* —b) >0, YA R™. (2.11)
Notice that the above expression is equivalent to
Au* = b.
Writing (2.10) and (2.11) together, we get the following variational inequality:

w* e, Ou) —0(u*)+ (u—u) (AT *) >0, Vuel,
R A= MA)T(Au* —b) >0, VAeRm.



Using a more compact form, the saddle-point can be characterized as the solution

of the following VI:
w* € Q, Ou)—0u*)+ (w—w)'Fw*) >0, Ywe. (212

where

— AT\
w=<u>, F(w)=< A ) and Q=UxR". (213
A Au —b

Because F' is a affine operator and

P = (557 (2) - ()

The matrix is skew-symmetric, we have

24



25

Convex optimization problem with two separable functions I

min{6,(z) + 02(y) | Ar+ By =b,x € X,y € V}. (2.14)
This is a special problem of (2.7) with

w=| "], u=xxy, A=(4B).
y

The Lagrangian function of the problem (2.14) is
The same analysis tells us that the saddle point is a solution of the following VI:

w* € Q, O(u) —0(u*) + (w—w)'F(w*) >0, YweQ. (2.15)



where

T
U = , O(u) =01(x) + 02(y), (2.16a)
Y
x — AT\
w=1\| v |, F(w) = — BT\ , (2.16b)
A Ax + By —b
and
Q=X x)Y xR, (2.16¢)
The affine operator F'(w) has the form
0 0 —AT x 0
Flw)=10 0 —-BT y|—1|0
A B 0 A b

Again, we have

26



Convex optimization problem with three separable functions I

min{f(x) +602(y)+03(z) | Ar+By+Cz=b,z € X,y Y,z € Z},

which is a special problem of (2.7). The Lagrangian function is
L3(z,y,2,\) = 01(x) + 02(y) + 03(2) — M (Ax + By + Cz — b).

The same analysis tells us that the saddle point is a solution of the following VI:

w* € Q, Ou) —0(u*) + (w—w)'Fw*) >0, Ywe Q.

where
(w\ T ( —ATA \
N B Flw) — —BTX
W = 5 , U= Yy ) (w)_ _ T 3
\ A ) ? \ Az + By + Cz = b )

O(u) = 01(x) + 02(y) + 03(2), Q=X xYxZxR™

27



3 Proximal point algorithms and its Beyond

Lemma 2 Let the vectors a,b € R™, H € R"*" be a positive definite matrix.
if bI'H(a — b) > 0, then we have

1117 < llallz — lla — bz (3.1)

The assertion follows from ||a||* = ||b + (a — b)[|* > [|b||* + ||a — b]|*.

3.1 Proximal point algorithms for convex optimization

Convex Optimization ' Now, let us consider the simple convex optimization

min{f(x) + f(x) | x € X'}, (3.2)

where 0(x) and f(x) are convex but f(x) is not necessary smooth, X is a

closed convex set.

For solving (3.2), the k-th iteration of the proximal point algorithm (abbreviated to

28
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1

PPA) [15, 18] begins with a given ¥, offers the new iterate "1 via the recursion

2F+ = Argmin{6(z) + f(z) + gHa} 22 lzex). (33

Since "1 is the optimal solution of (3.3), it follows from Lemma 1 that

0(z)—0(z" ) +(x — " THTLVF (2T +r(a" T —2F)) >0, Vo e X,
(3.4)

Setting x = ™ in the above inequality, it follows that
(xk—i—l —x*)T(ZUk —Cl?k+1) > e(xk:—}—l) —(9(33*) + (gjk—H —ZC*)TVf(SUk+1).

Since (zF 1t — )TV f(2F+1) > (k1 — 2TV f(2*) > 0, it follows that

(" — )T (2P — 2T > 0. (3.5)
Let a = 2% — 2* and b = z*T1 — 2* and using Lemma 2, we obtain
2"t — 2|2 < (la® — 2*||® — [l2* — 2" T2, (38)

which is the nice convergence property of Proximal Point Algorithm.



The residue sequence {||z* — 2*T1||} is also monotonically no-increasing. I

Proof. | Replacing £ + 1 in (3.4) with k£, we get

0(z) — 0(z") + (x — ) {Vf (") + r(c” — 2"} >0, Ve ex.

#+1 i the above inequality, it follows that

letz = x
0z — 0(2") + (" — M) T{VFE®) +r@" =2} >0, @7
Setting 2 = z* in (3.4), we become
(") — 0(z"") + (2" — ") V(") +r(@" —2")} > 0. @9
Adding (3.7) and (3.8) and using (z* — 2" )T [V f(2*) — V f(z*T1)] > 0,
(" =" 2" = (" ="} >0, (3.9)

Setting a = Pt — zFandb = 2 — T in (3.9) and using (3.1), we obtain

la® =27 <l =27 — || (" T = a®) = (& —2"T)|17. 310)

30



We write the problem (3.2) and its PPA (3.3) in VI form

The equivalent variational inequality form of the optimization problem (3.2) is

e X, 0(x) —0(x*)+ (z —2")'Vf(z*) >0, Ve e X. (3.11a)

For solving the problem (3.2), the variational inequality form of the k-th iteration of
the PPA (see (3.4)) is:

Pl e x, 0(x) — 02T + (x — 2P THTV f 2k

> (v — o) Tr(ak — 28, Vo e X,
(3.11b)

PPA Bid R #E— AR FIM (3.3), K15 (3.2) HUfE, RAMNR L L HEHIKEE.
Using (3.11), we consider the PPA for the variational inequality (2.12)

31



3.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the linearly constrained convex optimization is

characterized as a mixed monotone variational inequality:

w* € Q, O(u) —0(u*) + (w—w) ' F(w*) >0, YweQ. (3.12)

PPA for VI (3.12) in Euclidean-norm | For given w* and r > 0, find w*+1

)

W€ () — () o+ (w—w T E@Y)
> (w — wrFH) T (wh — wht), Yw e Q. |

k41

w is called the proximal point of the k-th iteration for the problem (3.12).

"« w¥ is the solution of (3.12) if and only if w* = w1 K

Setting w = w™ in (3.13), we obtain

(wk—l—l_w*)TT(wk_wk—l—l) > e(uk—l—l)_e(u*)_l_(wk—i—l_w*)TF(wk—i—l)

32



Note that (see the structure of F'(w) in (2.13))
(,wk—i—l . w*)TF(wk—i—l) _ (wk—i—l . w*)TF(w*),
and consequently (by using (3.12)) we obtain

(w* T —w") r(w® — w1 > oW T — () + (W — W) F(w*) > 0.

Thus, we have
(wr Tt — w7 (w® — w1 > 0. (3.14)

By setting @ = w® — w* and b = w*t! — w*, the inequality (3.14)
means that b% (a — b) > 0. By using Lemma 2, we obtain

lw" ™ — w*|* < flw® —w||* = lw* — w2 @as)

We get the nice convergence property of Proximal Point Algorithm.

The sequence {w"} generated by PPA is Fejér monotone.  As in (3.10),
the residue sequence {||w”* — w”*T1||} is also monotonically no-increasing.

lw® — " TH* < ™7 — w®F = [[(w" T = ") — (" — w1

33



PPA for monotone mixed VI in H-norm '

For given wk, find the proximal point w®*T1in H-norm which satisfies

whtl e Q. O(u) — O(uf ) + (w — wFTHTF(wh) (3.16)
> (w — wFHTH(wh —wF ), Vw € Q, |

where H is a symmetric positive definite matrix.

Y4 Again, w” is the solution of (3.12) if and only if w* = w®+1

Convergence Property of Proximal Point Algorithm in //-norm I

Jw = wff < w® —w | = [lw® - Wt (3.17)

The sequence {w"} is Fejér monotone in H-norm. In primal-dual algorithm [?],
via choosing a proper positive definite matrix H , the solution of the subproblem
(3.16) has a closed form. In addition, for the residue sequence, we have

lw® — ™ G < T = Wt = (W = w”) = (Wb = w™

34
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4 From augmented Lagrangian method to C-PPA

We consider the convex optimization (1.1), namely

min{f(x) | Ax = b, x € X'}.

4.1 Augmented Lagrangian Method
The augmented Lagrangian function of (1.1) is
Ls(z,N) =0(z) — M (Az —b) + gHAx—bH2, (4.1)

where the quadratic term is the penalty for the linear constraints Ax = b.

The k-th iteration of the Augmented Lagrangian Method [14, 17] begins with a
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iven \* obtain w*T! = (¥ N1 via
g ;

ALM 2" = argmin{ Lg(z, \¥) |z e X}, (4.2a)
AL = \F — B(AZRT — ). (4.2b)

In (4.2), ok lis only a computational result of (4.2a) from given M\* it is called
the intermediate variable. In order to start the k-th iteration of ALM, we need only

to have \* and thus we call it as the essential variable. According to Lemma 1,
the optimal condition can be written as w**1 € Q and

O(x) — 0(x"Th) + (x — 2" THT{—AT N + BAT (Az"TH —b)} >0, Vz € X,
A= XAz —b) + ST = A5)} >0, VA e R™

The above relations can be written as

T

k41 _AT)\k—l—l 1

0(z)—0(z )+ | “ T > A MNFDT Z (A _\BFL) yyy € Q.
A — Akl Axktl —p B

(4.3)



Setting w = w™ in (4.3) and using the notations in (2.13), we get
()\k+1_>\*)T(>\k_)\k+1) > 5{9($k+1)—8(x*)—|—(wk+1—w*)TF(wkH)}.
By using the monotonicity of F' and the optimality of w™, it follows that

0(:13’““) L (9(33*) + (wk—i—l L w*)TF(wk—l—l)

> Oz — 0(z*) + (Wt —w) T F(w*) > 0.

Thus, we have
(AFFL AT (AR — XY > 0, (4.4)

By using the above inequality, we obtain

I = X517 = [ =A%)+ (A = AP
> H)\kz+1 . )\*HQ 4+ H)\kz o )‘k+1H2'

It means that

P i P Rl P e b (4.5)
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The above inequality is the key for the convergence proof of the Augmented
Lagrangian Method.

For solving (1.1), in each iteration of ALM we have to solve the subproblem (4.2a).
Notice that

arg min{Lﬁ(a},)\k) |z e X}

= argmin{f(z) — (\*)" (4dz —b) + §||A:C —b))* |z € X}
1
B

Thus, the mathematical form of the sub-problems of ALM is

— argmin{@(x)—l—gHAx—b— )\k||2’£6€)(}.

min{d(x) + gnAa: —p|* |z € X3, (4.6)

where 0 > 0, and p is a given vector. The subproblem (4.6) is a little bit difficult.
We use ALM only when the solution of (4.6) has a closed-form representation or it

can be efficiently solved up to a high precision.
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4.2 From C-P method to Customized PPA

For the primal-dual methods and customized PPA in the last section, we assume
that the subproblem min{6(z) + % ||z — a||* |z € X'} is simple.

The Lagrange function is
L(z,\) =0(z) = M (Az = b),  (z,)) € X x R™.

For the primal-dual methods and customized PPA in this subsection, we assume
that the subproblem

min{6(z) + ng —al? |z € X)

4.2.1 Original primal-dual hybrid gradient algorithm [19]

For given (2, \¥), produce a pair of (z*T1, \FT1). First,

2R+ — Argmin{ L(z, \F) + ng 2z e X}, (47a)
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and then we obtain \**! via
Ae+L — Argmax{ L(zF 1, \) — %HA —“AF|2 | e R (4.7b)
Note that the optimality condition of (4.7a) is
0(z) —0(z" )+ (@ — ") {=AT" N 4 r (" 2"} >0, Ve e X. (48
The problem (4.7b) is an unconstrained optimization, thus we have
(Az* Tt —b) + sV =A%) =0, (4.9)
and it can be written as

AL e ®m (= AT LA™ — b) + s(A*H — A1 >0, v € R™.



Combining (4.8) and (4.9), we get

T
k1 AT )+
0(z) — 0"+ [

A — N AxFtt — b

r $k+1 . xk —|—AT )\k—l—l o )\k

+ ( J+A ) >0, V(z,A)€Q,
s(AFTL — \F)
where
Q=X xR™.

The compact form is

0(z) — ("™ + (w — w* TH{F ") + Q" —w*)} >0, Yw € Q,
(4.10)
where

rl, A" . _
Q = is not symmetric.

0 sl,,

It does not result in the PPA form (3.16), and we can not expect its convergence.

41



The following example of linear programming indicates

the original PDHG (4.7) is not necessary convergent.

Consider the following pair of primal-dual linear programming:

min x
max Yy
(Primal) s.t. =1 (Dual)
s.t. y<1
x > 0.

The optimal solutions of this pair of linear programming are x* = 1 and y~ = 1. Note

that its Lagrange function is
Lz,y) =z —y(z —1) (4.11)

which defined on R4+ X R. (x*,y™) = (1, 1) is the unique saddle point of the Lagrange

function.

42



7 * 4
fwlA w We (1,1) w
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wo. (0,0) W Tyd

Fig. 3.1 The sequence generated by PDHG Method

4.2.2 Customized Proximal Point Algorithm-Classical Version

If we change the non-symmetric matrix () to a symmetric matrix A such that

43



then the variational inequality (4.10) will become the following desirable form:

0(z) — 0(z" ) + (w — W HT{F (") + Hw" —w")} >0, vw € Q.

(4.12)
For this purpose, we need only to change (4.9), namely,
(Az" T —b) + s(A*TT = A" =0,
to
(Az" T —b) + A" — %) + sV = M) = 0. (4.13)

Because "1 is known, with the given 2z* and A, A\*T1 in (4.13) is given by

AL 3k %[A(Zz;k“ Y

Thus, for given (z*, A*), produce a proximal point (z"**, \*T1) via (4.7a) and (4.13)

can be summarized as:

gt = argmin{L(a:, )\k) + gHw — a:kH2 | x € X}. (4.14a)

A = argmax{L([kaJr]L — 2", A) — ;H)\ — )\kHQ} (4.14b)




By ignoring the constant term in the objective function, getting 2" from (4.14a) is

k+1

equivalent to obtaining x from

"t = argmin{ 6(z) + gHaz — [xk + %AT)\’“} H2 ’a: c X}
The solution of (4.14b) is given by

ALk Lot ok Ly
S

Assumption: min {#(z) + %||z —a|* |z € X'} is simple

Indeed, under the assumption, the sub-problem (4.14a) is simple.

In the case that 7s > || AT Al|, the matrix

rl, A’
H = is positive definite.
A sl

Theorem 1 The sequence {w" = (z*, \*)} generated by the customized PPA
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satisfies

Hwk—l—l

—w*lF < Jw® — w7 = llw® — Wt (4.15)

The VI approach greatly simplifies the convergence analysis of the CP (Chambolle-Pock)
method which can be viewed as a classical version of the customized PPA.

¢ A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem with

applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
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w #0,0)

Fig. 3.2 The sequence generated by Customized PPA

¢ B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex
minimization with linear constraints, Comput. Optim. Appl., 56: 559-572, 2013.

& G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly
constrained convex minimization and saddle-point problems: a unified approach,
Comput. Optim. Appl., 59(2014), 135-161.

¢ B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle
-point problem: From contraction perspective, SIAM J. Imag. Sci., 5, 119-149, 2012.
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Produce (2" \**1) by using the dual-primal order:

N = argmax{ (¥, 2) — 2[4 = X[} (4.16a)

2"t = argmin{ L(z, 2\"T1 — \")) + gHa: — a:kHQ |z e X}, (4.16b)

By using the notation of w, F'(w) and  in (2.13), we get w**! € Q and

0(z)—0(z" 1)+ (w—w T {F (w* ™+ H(w" T —w")} >0, Yw € Q,

where

is symmetric and in the case s > || A? A||, the matrix H is positive definite.



Note that in the primal-dual order,

rl, AT
A sl,,

H =

Remark ' Let the linear constraints become to a system of inequalities.

min{f(x) | Ax =b, z € X} min{f(x) | Ax > b, z € X}

—
In this case, the Lagrange multiplier A should be nonnegative. {2 = X" X §RT
We need only to make a slight change in the prediction procedure:

In the primal-dual order:

AL = N L (A4 = 2®) = b) = A =

In the dual-primal order:
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4.3 Simplicity recognition
Frame of VI is recognized by some Researcher in Image Science I

Diagonal preconditioning for first order primal-dual algorithms
in convex optimization*

Thomas Pock Antonin Chambolle
Institute for Computer Graphics and Vision CMAP & CNRS
Graz University of Technology Ecole Polytechnique
pock@icg.tugraz.at antonin.chambolle@cmap.polytechnique.fr

e T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

e A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem
with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.



preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F'™* it follows that for any (z,y) € X X

Y the iterates 2" 1 and y**! satisfy
$_$k+1) (xk+1> (xk+1_xk>>
F M >0,
< ( Y — g+ k1 ghFL gk
&)
where
xk'H (9G((Ek+1) _|_KTyk:+1
F yk—|—1 — aF*(yk—l—l) _ Kkt 3
and ) .
T —K
M= [ W ] (©)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].
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In this work we revisit a first-order primal—dual algorithm which was introduced in [ 15,
26] and its accelerated variants which were studied in [5]. We derive new estimates
for the rate of convergence. In particular, exploiting a proximal-point interpretation
due to [16], we are able to give a very elementary proof of an ergodic O(1/N) rate
of convergence (where N 1is the number of iterations), which also generalizes to non-

Algorithm 1: O(1/N) Non-linear primal—dual algorithm

e Input: Operator norm L := || K|, Lipschitz constant L ; of V f, and Bregman
distance functions D, and D.

e Initialization: Choose (xo, yo) eXx)V, 1,0>0

e lIterations: For each n > 0 let

T YY = PDL o (27, ¥, 26— Xy (11)

The elegant interpretation in [ 16] shows that by writing the algorithm in this form

& 1ZICHYICHL [16] 2 A1&LFTTE SIAM J. Imaging Science LRI E.

B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a
saddle -point problem: From contraction perspective, SIAM J. Imag. Science
5(2012), 119-149.
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Proximal point form
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5 Applications in scientific computation
5.1 Finding the nearest correlation matrix

min{%HX |2 |diag(X) = e, X € "1, 5.1)
where e is a ni-vector whose each element is equal 1.
The problem has the mathematical form (1.1) with || AT A|| = 1.
We use z € R™ as the Lagrange multiplier for the linear equality constraint.

Applied Customized PPA to the problem (5.1)

For given (X*, 2*), produce the predictor (X*1, 2*+1) by using (4.16):

1. Producing 2"+ by

1
= 28— Z(diag(X*) —e).
s



2. Finding X% +1 which is the solution of the following minimization problem

. 1 r 1 : n
min {7} X — O[3+ 21X — [X* + Taiag(2:5+! — 4)][3|X € 7).
(5.2)

How to solve the subproblem (5.2) The problem (5.2) is equivalent to

1
min{iﬂX -~ [r X% + diag(22" — 2F) + O)||%1X € ST}

147
The main computational load of each iteration is a SVD decomposition.

Numerical Tests ' To construct the test examples, we give the matrix C' via:

C=rand(n,n); C=(C’+C)-ones(n,n) + eye(n)

In this way, C'is symmetric, Cj; € (0,2),and C;; € (—1,1),fori # j.

Matlab code for Creating the test examples

clear; close all; n = 1000; tol=1le-5; r=2.0; s=1.01/r;
gamma=1.5; rand(’state’,0); C=rand(n,n); C=(C"+C)-ones(n,n) +

eye (n) ;
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Matlab code of the classical Customized PPA

%% Classical PPA for calibrating correlation matrix (1)
function PPAC(n,C,r,s,tol) $(2)
X=eye (n) ; y=zeros (n, 1) ; tic; %% The initial iterate % (3)
stopc=1; k=0; % (4)
while (stopc>tol && k<=100) %% Beginning of an Iteration % (5)
if mod(k,20)==0 fprintf ('’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)
X0=X; y0=y; k=k+1; 5 (7)
yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-vyt; %(8)

A= (X0*r + C + diag(yt*x2-y0))/(1l+r); %(9)
[V,D]=eig (A7) ; D=max (0,D); XT=(V«D)*V’; EX=X0-XT; %(10)
ex=max (max (abs (EX))); ey=max(abs (EY)); stopc=max (ex,ey); S(11)
X=XT; y=vyt; %(12)
end; % End of an Iteration $%$(13)
toc; TB = max (abs (diag(X-eye (n)))); %(14)

o\
o\°

fprintf (! k=%4d epsm=%9.3e max|X_jj - 1|/=%8.5f \n’,k,stopc, TB);

The SVD decomposition is performed by [V,D]=eig(A) in the line (10) of the above code.

The computational load of each decomposition [V,D]=eig(A) is about In’ flops.

Modifying the Classical PPA to Extended PPA, it needs only change the line (12)
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Matlab Code of the Extended Customized PPA

%% Extended PPA for calibrating correlation matrix (1)
function PPAE(n,C,r,s,tol,gamma) % (2)
X=eye (n) ; y=zeros (n,1); tic; %% The initial iterate % (3)
stopc=1; k=0; % (4)
while (stopc>tol && k<=100) %% Beginning of an Iteration % (5)
if mod(k,20)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)
X0=X; y0=y; k=k+1; 5 (7)
yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-vyt; %(8)

A= (X0+xr + C + diag(ytx2-y0))/(1l+r); %(9)
[V,D]=eig (A); D=max (0,D); XT=(V«D)*V’; EX=X0-XT; %(10)
ex=max (max (abs (EX))); ey=max (abs (EY) ) ; stopc=max (ex, ey) ; $(11)
X=X0-EX*gamma; y=y0-EY*gamma; 3(12)
end; % End of an Iteration % (13)
toc; TB = max (abs (diag(X-eye(n)))); $(14)

o\°
o\°

fprintf (! k=%4d epsm=%9.3e max|X_jj — 1|/=%8.5f \n’,k,stopc, TB);

58



The difference of the above mentioned codes only in the line 12, the method is much

efficient by taking the relaxed factor v = 1.5.

Numerical results of (5.1)-SVD by using Mexeig

n X n Matrix Classical PPA Extended PPA
n = No. It | CPU Sec. No. It | CPU Sec.
100 30 0.12 23 0.10
200 33 0.54 25 0.40
500 38 7.99 26 6.25
800 38 37.44 28 27.04
1000 45 94.32 30 55.32
2000 62 723.40 38 482.18

The extended PPA converges faster than the classical PPA.

It. No. of Extended PPA
_ ~ 65%.
It. No. of Classical PPA
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5.1.1 Application in matrix completion problem

(Problem)  min{|| X, | Xq = Mq}. (5.3)

We let Z € R™™™ as the Lagrangian multiplier to the constraints X = Mq.

For given (X%, Z¥), applying (4.14) to produce (X*T1, Z++1):

1. Producing Z**! by
1

k’-l—lZZS]_Cz__
S

2o (XE — Mg). (5.4)

2. Finding X**1 by
. r 1, = 2
XM = argmin {|| X|]. + 5HX— (XF+ ;(225 - Z3)] |5} 65
Then, the new iterate is given by

Xk-l—l — Xk: L "}/(Xk L Xk:-l—l)’ Zk:-l—l — Zk L ’)/(Zk L Zk-i-l).



Test examples ' The test examples is taken from

¢ J. F. Cai, E. J. Candes and Z. W. Shen, A singular value thresholding algorithm
for matrix completion, SIAM J. Optim. 20, 1956-1982, 2010.
Code for Creating the test examples of Matrix Completion

%% Creating the test examples of the matrix Completion problem (1)
clear all; clc $(2)
maxIt=100; tol = le—-4; % (3)
r=0.005; s=1.01/r; gamma=1.5; % (4)

n=200; ra = 10; oversampling = 5; %(5)
% n=1000; ra=100; oversampling = 3; %% Iteration No. 31 % (06)
% n=1000; ra=>50; oversampling = 4; $% Iteration No. 36 $(7)
% n=1000; ra=10; oversampling = 6; %% Iteration No. 78 %(8)
%% Generating the test problem 5(9)
rs = randseed; randn (" state’, rs); $(10)
M=randn (n, ra) xrandn (ra, n) ; %% The matrix will be completed %(11)
df =rax* (n*2-ra); %% The freedom of the matrix $(12)
mo=oversampling; 5(13)
m =min (moxdf, round(.99xn=*n)) ; %% No. of the known elements $(14)
Omega= randsample (n"2,m); %% Define the subset Omega %(15)
fprintf ("Matrix: n=%4d Rank (M)=%3d Oversampling=%2d \n’,n,ra,mo);%(16)
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Code: Extended Customized PPA for Matrix Completion Problem

fprintf (’ Relative error = %9.2e Rank (X)=%3d \n’,RelEr,rank (X)) ;
fprintf (’ Violation of KKT Condition = %9.2e \n’,VioKKT);

function PPAE (n,r,s,M,Omega,maxIt,tol, gamma) % Ititial Process %% (1)
X=zeros (n) ; Y=zeros (n) ; YT=zeros (n) ; $(2)
nMO=norm (M (Omega), ' fro’); eps=1; VioKKT=1l; k=0; tic; % (3)
%% Minimum nuclear norm solution by PPA method % (4)
while (eps > tol && k<= maxIt) 5(5)
if mod(k,5)== % (06)
fprintf (" It=%3d |X-M|/|M|=%9.2e VioKKT=%9.2e\n’,k,eps,VioKKT); end;%(7)
k=k+1; X0=X; YO=Y; % (8)
YT (Omega) =Y0 (Omega) — (X0 (Omega) -M (Omega) ) /s; EY=Y-YT; % (9)
A = X0 + (YT*x2-Y0)/r; [U,D,V]=svd(A,0); %$(10)
D=D-eye (n) /r; D=max (D, 0) ; XT=(U%D) *V’ ; EX=X-XT; $(11)
DXM=XT (Omega) —M (Omega) ; eps = norm(DXM, ' fro’) /nMO; %(12)
VioKKT = max ( max (max (abs (EX)))*r, max (max (abs(EY))) ); $(13)
if (eps <= tol) gamma=1; end; $(14)

X = X0 - EX*xgamma; 35(15)

Y (Omega) = YO0 (Omega) - EY (Omega) *gamma; %(16)
end; 5 (17)
fprintf (" It=%3d [|X-M|/|M|=%9.2e ViOKKT=%9.2e \n’,k,eps,VioKKT); % (18)
RelEr=norm((X-M),’ fro’) /norm(M,’ fro’); toc; %$(19)
%(20)

%(21)
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Numerical Results: using SVD in Matlab
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Unknown n X n matrix M Computational Results
n  rank(ra) m/d,, m/n? | #iters times(Sec) relative error
1000 10 6 0.12 76 841.59 9.38E-5
1000 50 4 0.39 37 406.24 1.21E-4
1000 100 3 0.58 31 362.58 1.50E-4
Numerical Results: Using SVD in PROPACK
Unknown n X n matrix M Computational Results
n rank(ra) m/d.. m/n® | #iters times(Sec) relative error
1000 10 6 0.12 76 30.99 9.30E-5
1000 50 4 0.39 36 40.25 1.29E-4
1000 100 3 0.58 30 42.45 1.50E-4

& The paper by Cai et. alis the first publication in SIAM J. Opti. for matrix completion

problem. For the same accuracy, the iteration numbers are listed in the last column of the

above table (See the first 3 examples in Table 5.1 of [2], Page. 1974).

& The reader may find, for the two examples in in §2.4, the constrained matrix A is a

projection matrix and thus || A A|| = 1, thus we take s = 1.01. However, we take

r = 2anr = 1/200in §2.4.1 and §2.4.2, respectively. r is problems-dependent.
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Thank you very much for your attention




T
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