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1 Problems and the customized PPA

1.1 Problem and the related VI and PPA

We consider the linearly constrained convex optimization problem
min{f(u) | Au =5, u € U}. (1.1)
The Lagrange function of (1.1) is

L(u, \) = 0(u) = X (Au—b),  (u,\) €U x R™. (1.2)

Saddle Point of the Lagrange Function




A pair of (u*, \*) € U x R is called a saddle point if
Lyerm (u™,\) < L(u",\") < Lycu(u, \").

The above inequalities can be written as

uw' eU, L(u,\*)—L{u",\")>0, Vuel,

{ ANeR™ L, \")—L(u",\) >0, VixeR™.
According to the definition of L(u, A) (see(1.2)), we get the following variational inequality:
w* eU, O(u) —0u)+ (u—u)(=ATX*) >0, Yuecl,
{A*e%ﬂ A=A (Au* =b) >0, VIeER™.

Using a more compact form, the saddle-point can be characterized as the solution of the

following VI:
w* e, 0w —0u")+ (w—w)"Fw*) >0, YweQ. (1.4a)
where
— A"\
w:(u>, F(w):( ) and Q=U x R™". (1.4b)
A Au —b



Because F' is a affine operator and

0 —AY\ [ u 0
F(w) = —
w=(4 7)) -G)
the matrix is skew-symmetric, and we have

(w — ) (F(w) — F(w)) = 0. (1.5)

For solving the VI, we use the following customized PPA.

Lemma 1 Let the vectors a,b € R™, H € R"*" be a positive definite matrix.
if b1’ H(a —b) > 0, then we have

10lI7 < llall7r — lla — bll-

The assertion follows from ||a||%; = [0+ (a —)||% > ||bl|% + ||a — b||%;.




Lemma 2 Let X C R" be a closed convex set, (x) and f(x) be convex
functions and f (x) is differentiable on an open set which contains X .

Assume that the solution set of the minimization problem

min{f(x) + f(x) |z € X'} is nonempty. Then,

r* € argmin{f(z) + f(x) |z € X'} (1.6a)

if and only if

v c X, O(x) —0(z*) + (x —2*)'Vf(z*) >0, Vz € X. (1.6b)

PPA for VI (1.4) I For given v* (v = w or sub-vector of w) and H > 0, find

wh T e Q) 0(u) — (Ut + (w — wPTHT F (Wt
> (v —o"THYTH@WF — o), vw e Q. (1.7)

k41

w is called the proximal point of the k-th iteration for the problem (1.4).



w” is the solution of (1.4) if and only if v* = v*+1.

Setting w = w™ in (1.7), we obtain
(vk—H _U*)TH(,Uk _,Uk—|—1) > 9(uk+1) —O(u) + (wk:+1 _w*)TF(wk+1)
Note that (see the structure of F'(w) in (1.5))
(wk—l—l _ w*)TF(wkz-l-l) _ (wk-l-l _ w*)TF(w*),
and consequently (by using (1.4)) we obtain
(vk+1_v*)TH(Uk_,Uk+1) > 9(uk+1)_9(u*)+(wk—|—1_w*)TF(w*) > 0,

and thus
(VF Tt — )T H (v — ot > 0. (1.8)

k k+1

Now, by denoting a = v — v* and b =v — ™ and using Lemma 1, we

get the nice convergence property of Proximal Point Algorithm:

”Uk+1

o [ (T T e e % (1.9)



Relaxed PPA for VI (1.4) I Set the output of (1.7) as ", we get

" € Q, 0(u) - 0(a") + (w— @) F(a")
> (v— ") TH@" —3"), Vw € Q. (1.10)

Instead of (1.8), we have

Thus, we have

(v* — o) THE" — %) > [|v* — 3" ||%. (1.11)
By setting

VP =0F —a(v® —3%), a€(0,2)
we get

0" =" < 0" =0T a2 = @)t -5

Usually, by setting o € [1.2, 1.6], The relaxed PPA is much fast than the classical PPA.



1.2 Applications for separable problems

This section presents various applications of the proposed algorithms for the

separable convex optimization problem
min{6(x) +02(y) | Ar+ By =b, x € X,y € V}. (1.12)
lts VI-form is

w* € Q, O(u) —0(u*) + (w—w)'F(w*) >0, YweN. (1.13a)

where
x — AT\
x
w=| vy |, u= , F(w) = BT ) ., (1.13b)
A Y Ax + By — b
and

O(u) = 01(x) + 02(y), Q=X xYxR™ (1.13c)
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The augmented Lagrangian Function of the problem (1.12) is

La(z,y,\) = 01(z) +0(y) — M (Az + By — b) + gHAx + By — b||%.

(1.14)
Solving the problem (1.12) by using ADMM, the k-th iteration begins with given
(y*, \F), it offers the new iterate (y*+1, \FT1) via

(Pt = argmin{ﬁg(az,yk,Ak) ’ x € X}, (1.15a)
(ADMM) < "t = arg min{ﬁg(xkﬂ,y,)\k) ’ Y € y}, (1.15b)
(AP = AP — B(Ax* T 4 Byt —b). (1.15¢)
X
w=1| vy |, v= < Q)J\ ) and V* = {(y",\") | (", y", \*) € Q*}.
A

The main convergence result is

L L el A P A



where

11

T
" BBTB 0 |
0 %Ln

Ignoring some constant term in the objective function, ADMM (1.15) is

implemented by

(ADMM)

where

<

y

\

[ 9,(x) — 2T ATpF

2"t = arg miny 1; ) . p2 T € X}, (1.16a)
| +3llA(z —27)[]".
( 0 . TBT k

y" ! = arg min: 2B<y) ’ iy q2 ‘ Yy € y}, (1.16b)
L 5By —yo)II"

N = \F — (A" + By —b). (1.16¢)

p" = A —pB(Az" + By" —b),
" = N —p(Az"t + By" —b).



1.3 ADMM in PPA-sense

RIE PPA BUERZEK I A I EME AR FRIEE. I

In order to solve the separable convex optimization problem (1.12), we construct a

method whose prediction-step is

O(u) — 0(a") + (w — )T F(@®) > (v — )T H(W* —o%), Yw € Q,
(1.17a)

where

BBTB +46I,, —BT
H = , (asmalld > 0,say 0 = 0.05).

(1.17b)
Since H is positive definite, we can use the update form of Algorithm | to produce
the new iterate v 1 = (y*T1, A¥+1) (In the algorithm [1], we took § = 0).

12



The concrete form of (1.17) is The underline part is F(@k):

91(x)—91(:i‘k)+(a:—a~vk)T _ AT
F(w) =

(

{_ATS‘IC} Z 07 _BT)‘
_ ~ Ax + By — b
02(y) — 02(3") + (v — g*)"
{=B"X* + (BB"B + 6I,.,)(§* — y*)—B"(\* = \")} > 0,
| (A#"+Bg*-b)  —B@E* -y + (1/8) V-1 =o0

\

In fact, the prediction can be arranged by

( 7" € Argmin{0; (z) —2" AN +1B|| Az + By* — b||> |z € X}(1.18a)

A= \F — B(AzF + By* —b), (1.18b)
\
(1) — yT BT [2\F — \F
y]kEArgmin{ , 2(y) yk 2[ , ]k , ‘yey}.(HSc)
\ +581B(y — y*)|I* + 56|y — v*|]

XN S Z AR B EDE (1.15) 1S, KA IE, SINIRERE.
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According to Lemma 2, the solution of (1.18a), T* satisfies
e Xx, 01(x)—0.(z")
+ (z — ") T{—ATN* + BAT (AZ" + By" —b)} >0, Vz e X.

By using (1.18b), A= \F — B(A:'i:k + Byk — b), the above variational inequality can

be written as

P eXx, 01(z)— 01"+ (x —3)T{=ATX} >0, Ve e X.

The equation (1.18b) can written as

(AZ" + Bg® — b)—B(§* — y*) + (1/8) (A = ) =0,

The remainder part of the prediction (1.17), namely,
02(y) — 02(3") + (y — 5*)"
{=BTX* + (BB"B + 6I.,) (5" — y*)—B"(\* = A")} > 0

can be achieved by

) | . 1 1
g" = Argmin{62(y)—y" B" [2A"=A"+5 B By—y") " +50lly—y"II* [y € V}.

14
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1.4 Linearized ADMM-Like Method

= FIEIRR (1.180) RIFBEMER, B 5|y — o"|I” K& L26IBy —v")*.

By using the linearized version of (1.18), the prediction step becomes

0(u) — 0(7") + (w — ") F(@") > (v — " THW" — 3%, vw € Q, (1.19)

where
sI —B7T ‘ 1+6)BB™B —BT
H = { ], RE (1.17) By ( ) . (1.20)
-B  1I. -B 5 Im
The concrete formula of (1.19) is The underline part is F(w’“):
[ 01(2) — 61(F*) + (z — &) _ AT
{=AT)*} >0, F(w) = —BTA
. i Ax 4+ By — b
¢ O2(y) — 02(5") + (y — §°)" T (1.21)

{=BTN" + (7" —y") =BT (\" = A")} > 0,
| (A7 + BJ* —b)—B(7* —y*) + (1/8)(\* =A%) =0.




Then, we use the form

to update the new iterate v*11.

How to implement the prediction? ' To get W* which satisfies (1.21),

we need only use the following procedure:

i

7% € Argmin{6; (z) — 2T ATNF + 2 8||Ax + By* — b||* |z € X'},

&A=\ — B(AZF + By* —b),

~ ) ~ S
g¥ = Argmin{02(y) — yT BT[2D* — X\*] + Sy — y¥|1? |y € VI

A Slly —y"IIP % 2(BIB(y —y")I° +dlly — y" 1), AR,
FEs> BB B|. MAEM S >0, KKK s SEMHIERE.

RAEMM TR L8] By — )| 315 RBEM, 4 AL
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1.5 Balanced ADMM

We design the following PPA in sense of balanced ADMM whose essential variables are w:

0(uw) —0(@") + (w - F(@") > (w—o")" H(w" —a"), Yw € Q, (1.22a)

H = 0 sln, Bt : (1.22b)
A B (5+90)n+:BB"
The concrete formula of (1.22) is
01(x) — 01 (2") + (z — &) {=ATN"
+BATA( b —af) 4+ ATOF =) >0,
62(y) — 02(5") + (y — §*) T {=BTA* )
+ 53" —y")+BT (N - A} >0,

(A" + By" —b) + A@@" —2") + B(§" — ")
\ +{(5 + ) Imn + 1 BBT}(A\* = \*) =0.

’

(1.23)
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Then, we use the form

wh Tt = wh — a(wk — %), a€(0,2)

to update the new iterate v*11.

How to implement the prediction? ' To get w* which satisfies (1.23),

We need only use the following procedure:

(" € Argmin{6; (z) — 2T ATN" + Bl A —2®)|)? |z € X}, (1.24a)

{ 7" € Agmin{02(y) —y" B'A" + §slly —v*|I* |y € V}, (1.24b)

L N =0\ — Hy A% — 25+ B(2g" — ") —b]. (1.24c)
where

Hy = (% + ) + %BBT. (1.24d)

In this way, we get a PPA for (1.13) in the sense of the balanced ADMM.

It needs a cholesky decomposition of [y (Levenberg-Marquardt Type)




If the subproblem (1.24a) is hard to solve, we can change it to (1.24) to

2

" € Argmin{0; (z) — xT AT + trlle —2*||)? |z € &Y,
7" € Argmin{0(y) —y" B'A* + 3slly — v" I |y € V),
=\ — HyA@2E" — ") + B(2g" —yF) —1).

where
1

S
We get a PPA for (1.13) with the following prediction:

HbzlAAT+ BBY +51,,.
T

(1.25a)
(1.25b)
(1.25¢)

(1.254)

0(uw) —0(@") + (w—a") F(@") > (w—o")" H(w" —a"), Yw € Q, (1.26a)

r1n, 0 AT
H = 0  sln, Bt
A B LIAA"+1BB" +46I,

(1.26b)
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2 Prediction-Correction Framework

Prediction-correction framework for the VI (1.4)
[Prediction Step.] With given v”, find a vector " €  such that

0(uw) —0(i") + (w—0") F(@") > (v—3")" Q" — %), Yw € Q, (2.1a)

where the matrix Q is not necessarily symmetric but Q7 + Q is assumed to be positive

definite.  (We focus on the case that () is asymmetric).

[Correction Step.] Find a nonsingular matrix A and update v by

R = — M(vl‘C — ff)k). (2.1b)

Convergence conditions
For the matrices () and M used in (2.1a) and (2.1b), respectively, there exists a matrix
H > 0 such that

HM = @, (2.2a)

and
G=Q"+Q-M"HM 0. (2.2b)

20
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2.1 Convergence

Theorem 1 Let {vk} be the sequence generated by the prediction-correction framework
(2.1) under the conditions (2.2). Then, it holds that

o =" < It =T = I = vt eV ey

Proof. Using () = H M (see (2.2a)), the prediction step can be written as

e, 0w —0@")+(w—u") T F(@") > (v—o"THM (" — "), vwe Q.

Then, it follows from (2.1b) that Q=HM

" € Q, 0(w)—0(i")+(w—a") F@") > (v—0")"HW" — "), vYw e Q.
Setting w = w™ in the above inequality, we get
(" — " THYTH (" —0*) > 0(@") — 0(u*) + (0" —w*)'F(@"), Yw* e Q.

Because (0" — w*)T. (w ) = (" *)TF(w*) (see (1.5)), it follows from the
") -

optimality of w™ that 6(u O(u™) + ( v" — w*) F(w*) > 0and thus

(" — " THTH(@" —0*) >0, W* e V. (2.4)



Settinga = v

k
)

b =" ¢ =" and d = v* in the identity

2(a—0)"H(c—d) = {lla—dlltr — Ib—dlz} — {lla —cllz — b —cllz},

we know from (2.4) that

L [ [ [ [ 7 AR Al 2

For the right-hand side of the last inequality, we have

Jo* - 7"

™~
—
c

= 20" = THM@W" — %) — (* = ") MTHM " - %)

|2 k+1 —6k||§{

" — |v

k ~k 12 k ~k k k+1\112
vt =0 g — (0" = 07) = (0" = 0" )|
v — F|H — (0" = %) — M(0" — ") ||%

= ("= Q +Q—-M HM)(w" —3")

.2t ko ~ky2
— v — 07|

Substituting (2.6) in (2.5), the assertion (2.3) is proved. []

(2.5)

22



3 Constructing M from the conditions

3.1 Construction from the condition (2.2a)

Note that the condition (2.2a), H M = (), can be rewritten as
H=0QM™1 (3.1)

Since the norm matrix H is required to be symmetric and positive definite, the
condition (3.1) implies that A should be representable in form of

H=QD'Q", (3.2)

in which the matrix D is a undetermined positive definite matrix. Indeed, by
comparing (3.1) with (3.2), we know that M ! = D~1Q' and thus

M=Q 'D. (3.3)

Hence, although the matrix D in (3.2) is still unknown, choosing M as (3.3) can
ensure the condition (2.2a).

23



Now, we investigate the restriction on D to ensure the condition (2.2b) with the
matrix M given as (3.3). Notice that

M"HM = (DQ™H(QD'Q")(Q~"D) = D. (3.4)
With (3.4), then the condition (2.2b) is reduced to
G=QT+Q-MTHM =Q" +Q — D = 0. (3.5)

Hence, to ensure the condition (2.2b), the only restriction on the positive definite
matrix D in (3.2) is
0<D=<Q"+0Q, (3.6)

In other words, whenever () is given and it satisfies QT + @ >~ 0, then both H
and M can be constructed via the following steps:

HM=@Q, HM=0Q, H=QD™'Q",
= = (3.7)
MTHM=D. QTM=D. M=Q TD.
Through this construction, both the conditions (2.1b) and (2.2b) are guaranteed

to be satisfied. Note that once the matrix D) is chosen according to (3.6), the

24



matrices H, M and (G are all uniquely determined. Then, with the specified
matrix M in (3.3), the correction step (2.1b) and thus the prediction-correction
framework (2.1) is also specified as a concrete contraction splitting algorithm for
the VI(1.4)-(1.4b).

3.2 Construction from the condition (2.2b)

Alternatively, we can from the condition (2.2b), G = QY +Q — MY HM = 0, to
construct the norm matrix A and the correction matrix M. Again, with a given ()
satisfying QT + () > 0, we can choose the profit matrix G such that

0<G=<0Q+0Q. (3.8)

Denote

A=Q"+Q -G, (3.9)
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which is positive definite. According to (2.2b), we know that the matrices H and
M should satisfy

MTHM = A.

Recall the condition (2.2a): H M = (). Thus, with a chosen G satisfying (3.8),
H and M can be constructed vis the following steps:

MTHM=A, QTM=A, M=Q TA,
& & (3.10)

HM=Q. HM=Q. H=QA'Q".

Then, with the constructed matrix M in (3.10), the correction step (2.1b) and
thus the prediction-correction framework (2.1) can also be specified as a concrete
splitting contraction algorithm for the VI(1.4)-(1.4b). Again, with a given GG
satisfying (3.8), the matrices 1 and M are both uniquely determined.
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3.3 Choices of D and G

It is interesting to observe that the proposed two construction strategies can be

related via the relationship
D=0, G=0, and D+G=0Q"! +0Q. (3.11)

Hence, once D is chosen for the construction strategy in Section 3.1, the
corresponding (& given by (3.11) can be used for the construction strategy in

Section 3.2, and vice versa.

Technically, there are infinitely many such choices subject to (3.11). For example,

we can choose
D=a[Q@" +Q] and G=(1-0a)[Q" +Q], ac(0,1).

We will elaborate on the choice D = G = £[Q” + Q)] in Section 4.3.3.

27
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3.4 Implementation of the correction step (2.1b)

Note that the correction step (2.1b) can be rewritten as
QT(,Uk:—l—l . Uk) _ QTM(,Uk: . ,Dk:)

To implement the correction step (2.1b) with the constructed two choices for M ,
e, M =Q TDin@3.3)and M = Q1 Ain (3.10), we need to solve one of
the following systems of equations:

QT (vFT — o) = D(* — ok, (3.12)
and
QT (vFT — k) = A% —vF). (3.13)

Hence, although D and GG (thus A) can be chosen arbitrarily with the only
constraint (3.6) or (3.8), it is preferred to choose some model-tailored ones that
can favor solving the systems of equations (3.12) or (3.13) more efficiently.
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4 Application to three-block separable convex

optimization

In this section, we apply the strategies proposed in Sections 3.1 and 3.2 to a
separable convex optimization problem, and showcase how to construct the norm
matrix H and the correction matrix M/ when the matrix () is given.

4.1 Model
We consider the three-block separable convex optimization model with linear
constraints

min{6i(z) +602(y)+03(2) | Ar+By+Cz=b,z € X,y € Y,z € Z}, (4.1)

Clearly, it is a special case of the canonical convex programming problem (1.1), and the VI

(1.4)-(1.4b) can be specified as the following:

w* e, 0u) —0u")+ (w—w)" Fw*)>0, YVweQ, @2



where

(=) ()

x

J —B*T )\
w = , u=1| y |, F(w)= ,  (4.3a)

—CT\

z
\)\) \Aa:—l—By—l—C’z—b)
with

O(u) =01(x) +02(y) +603(2), Q=X XxYxZxR". (4.3b)

Let the augmented Lagrangian function of the model (4.1) be
£g’] (z,y,2,\) = 01(x) +0(y) +03(2) — \'(Az + By + Cz — b)
—|—§HA£—|—By—|—Cz—bH2 (4.4)

with A € ™ the Lagrange multiplier and 3 > 0 the penalty parameter.
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Direct extension of ADMM

/

ghtl ¢ argmin{ﬁ[g] (z,y%, 2% \F) |z € X},

YRt € arg min{ﬁ[g] (2Rt y, 25, 0NF) |y € Y,
$ (4.5)
Pl ¢ arg min{ﬁg’] (2T gt 2 \F) | 2 € 21,

AFFL = \F — (At 4+ Byt + C2F L —b).

\

However, the splitting scheme (4.5) is coarse in sense of that its convergence is

not guaranteed as shown in [2].

4.2 Discerning the prediction matrix ()

Our construction starts from the coarse splitting scheme (4.5) which can be
rewritten as the prediction step (2.1a) and hence the corresponding prediction

matrix () can be discerned. For this purpose, we first consider the subproblems
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related to the primal variables in (4.5), and rewrite them as
a® = (% g%, ZF) € X x Y x Z. Namely, we have

/

= argmin{ﬁg’] (z,yF, 28 NF) |z € X},

2/

= argm1n{£ TF,y, 2 NF) |y € VY, (4.6)

k: ~k k
\zEargmln{[, 2, ) |z € Z}.
Ilgnoring some constant terms, we can rewrite the formula above as
(

i* € argmin{6;(z) — z" A" N + gHAx + By* + Cz" —b|)* |z € X},

S gF e arg min{ 62 (y) — yT' BT F + §||A§§k + By +Cz" —b||* |y € Y},

\

zF € argmin{03(z) — 2" CT\* + g”Aik +B§* +Cz—0b||* |z € Z}.

32



33

Then, according to the optimality Lemma, we have @* € U and

( 01(z) — 01(2") + (z — #F) T {— AT Ak

+BAT(AZ* + By* + CzF —b)} >0, Vz € X,

02(y) — 02(5") + (v — %) T {—BTA*

< +BBT(Azk + BgF + CzF —b)} >0, Vye, &0
03(z) — 03(2F) + (z — 2F)T{-CT Ik
\ +B8CT(AZF + Bgk +CzF —b)} >0, Vz € Z.
By defining
A= \F — B(AZ* + By* + C2F —b), (4.8)
we have
(AF" + Bi* + C5* —b) — B@* — y*) — C(3* — 2*) + %(S\k SR =0



Using the VI form (4.3), we get w"* € 2 and
[ 01(z) — 01(3%) + (z — 3F)T{=ATXF} >0, VzeA,
02(y) — 02(5%) + (y — §*)T{=BTX* + BBTB(§* —y*)} >0, Vye,
_C«Tj\k i BCTB(:&"“ . yk)
BCTC(ZF — 2F)

(AZ* 4+ BgF + CzF —b)

B(g* — yF)—C(F — k) + %(Xk _AR)

X 93(2)—93(5k)+(z—5k)T{ }20, Vze Z,

M—XWT{ }zm VA€ A.

\
(4.9)

The sum of the underline parts of (4.9) is exactly ("), where F'(-) is defined
in (4.3). Thus, we have

" € Q, 0(u) —0(@") + (w— " F@") > (v—")T QMW" — %), vw € Q,
(4.10)
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where the prediction matrix is

BT B 0 0
Q=| BC'B pctc 0 . (4.11)
1
-B —-C =In
s

Moreover, for the prediction matrix () in (4.11) which is determined by the splitting
scheme (4.6) and the defined A* by (4.8), we have

28B™B  BBTC —BT
Q"+Q=| BcTB 28CTC —CT |, (4.12)
_B -C 2,

which is positive definite whenever B and C' are full column rank.
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4.3 Constructing the correction matrix N/

With the prediction matrix () given in (4.11), the prediction-correction framework
(2.1) can be specified as a concrete algorithm for the model (4.1) once the
correction step (2.1b) is specified. Now, we showcase how to specify the
correction step (2.1b) by the construction strategies discussed in Sections 3.1, 3.2
and 3.3. Note that v = (y, 2, \) below.

EHE 0<D < Q1 +Q ALURHBEEENFZE TAERR—LE4lFMmE.

4.3.1 Construction |

Based on (4.11) and (4.12), and following the strategy in Section 3.1, we can

choose
( vBBTB 0 0
D= 0 wBC'C 0 (4.13)
1
K 0 0 Blm )

with O < v < 1, which is positive definite whenever B and C' are both full
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column rank. Recall the correction matrix M in (3.3). Then, a concrete splitting
contraction algorithm for (4.1) can be generated as below.

Algorithm 1 for the model (4.1)

[Prediction Step.] Obtain (¥, 7%, Z¥) via the direct extension of the ADMM (4.6)
and define \* by (4.8).

[Correction Step.] QT (v* 1 — v*) = D(o% — v¥).

BBTB gBTC —BT

)
(BBT 0 0 B C —4In
QT=| o pcTc —-cT |=| o pcTt o 0 C —3Inm |,
0 0 %Im 0 0 5Im/\O 0 In
and
vBBTB 0 0 BBT 0 vB 0 0
D = 0 vBCTC 0 (

0 0
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That is, QT and [ have a common matrix in their factorization forms above.

Hence, to implement the correction step (2.1b), i.e.,
T/ k+1 k ~k k
Q (U - v ) — D(U — v )7

essentially we only need to consider the even easier equation

B C —5lnm yhtl — yF vB 0 0 gk — y*
0o C —%Im Zhtl _ Lk = 0 v(C 0 3k _ 2k
0 0 In Ao+l _ 2k 0 0 In e — \E
The above system of equations equivalent to
Imn Im —%Im Bykt+l — Byk vl,, 0 0 Bik — Byk
o In —%Im Czhktl _Czk | = O vl,, O Czk — CzF
0 0 In AEF+1 _ Nk 0 0 Im P

We can get (ByFt1, CzF+t1 \k+1) py a back-substitution.
Y
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4.3.2 Construction 2

Based on (4.11) and (4.12), and following the strategy in Section 3.2, we can

choose
(1-v)BB"B 0 0
G = 0 (1-v)gC™Cc 0 |, (415
1
0 0 BIm

with v € (0, 1), which can be guaranteed to be positive definite whenever B and
C' are full column rank. Note that the matrix & in (4.15) is precisely the matrix [
defined in (4.13). Furthermore, we have

(1+ v)3B™B BBTC _BT
A=Q"+Q-G= B3CTRB (1+v)gCctc —-cT
-B —C LIm

Recall the correction matrix M in (3.10). Then, another contraction splitting
algorithm for (4.1) can be generated as below.
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Algorithm 2 for the model (4.1)
[Prediction Step.] Obtain (¥, §*, Z¥) via the direct extension of the ADMM (4.6)
define \* by (4.8).

[Correction Step.] Q1 (vFT1 — vF) = A(TF — v¥).

For the correction step QT (v¥1! — v*) = A(TF — v*), we know that

BBTB BBTC —-BT

QT = o BcTc -cT
1
0 0 5 Im
BBT 0 0 B C —%Im
= o BcT o 0 C —5lm |,
0 0 %Im 0 0 Im
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and

(1+v)BBTB BBTC -BT
A = BCTB (1+v)pcTc -CT
—-B —C 51Im
BBT 0 0 (1+v)B C —51m
= 0o pct 0 B (1+v)C —%4Im
0 0 %Im — 8B —BC Im

That is, QT and A have a common matrix in their factorization forms above.

Hence, to implement the correction step (2.1b), i.e.,

QUM — ") = A@" — o),



essentially we only need to consider the even easier equation

B C —%Im yk+1 — yk
0o C —%Im Zhtl _ Sk
0 0 Im A1 \F
(1+v)B C —51m gk — yk
= B 1+0)C —5Im gk 2k . (4.17)
— 8B —BC I, 2N — \E
The above system of equations equivalent to
I Im —%Im Byktl — Byk
0 O Im A1 \F
(14 ) I'm —51Im Bijk — Byk
= I'm A +v)Im  —5Im Czk —CzF | . (4.18)
S\k _)\k

_B—[m _Blm Im

42
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Similar as (4.3.1), with the choice of GG in (4.15), implementing the resulting
correction step (2.1b) essentially only requires solving the equation (4.18) in terms
of (By*, Cz*, \*). By a manipulation, the correction form can be simplified to

Byk+1 Byk vi, —vli,, 0 B(yk _ gkr)
Crtt | =1 Cz" | - 0 vip 0 C(zF — zF)

4.3.3 Construction 3

Recall the relationship between the matrices D and G in (3.11), and Q" + Q
given in (4.12). Essentially, the proposed construction strategies in Sections 3.1
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and 3.2 take the same matrix

vBBTB 0 0
0 vBCTC 0
1
0 0 51Im

as D and GG, respectively, and then the other one is determined by (3.11). As
mentioned in Section 3.3, any other choice of D and (G subject to the relationship

(3.11) is also eligible. Let us consider the following specific one:

([ BB™B 1pBTC —1BT \
D=G= %[QT +Q] = | 1gc™B pcTc —icT |, (419
\ 1B 4O

which are both positive definite whenever B and C' are full column rank. Recall

the correction matrix M in (3.10). Then, one more contraction splitting algorithm

for (4.1) can be generated as below.
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Algorithm 3 for the model (4.1)
[Prediction Step.] Obtain (¥, §/*, Z¥) via the direct extension of the ADMM (4.6)
and define \* by (4.8).

[Correction Step.] QT (vF ! — oF) = 1[QT + Q](v"* — vF).

For the correction step QT (v* 11 — %) = 1[QT + Q] (0% — v*), we know that

s8BTB BBTC —BT BBT 0 0 B C —%Im
QT = 0o BcTc —-cT | = o pBCcT 0 0 C —%Im :
0 0 ir. 0 0 171, 0 0 I,

B



and

BBTB  BBTC —iBT
1
SR +Q = | 38C"B pCTC —5CT
1 1 1
1 1
sBT 0 0 B 3C —35Im
— T 1 1
= 0 BC 0 B C  —55Im
1 1 1
0 0 ELn —553 —550 Im

Thatis, @' and %[QT + ()] have a common matrix in their factorization forms
above.
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Hence, to implement QT (v 1! — v%) = 2[QT + Q] (0" — v¥), essentially we
only need to consider the even easier equation

B C —%Im yk'H — yk
0o C —%Im Zhtl _ Sk
0 0 In AL _ \k
B 3C —z5lm gt — y*
— %B C —%Im gk _ 2k : (4.21)
—3BB —3BC  Inm AR — R
The equivalent form
I Im —%Im Byktl — Byk
0 I, —%Im Czk+tl — Ok
0 0 Im AL \k
Im L Im —%Im Bgk — By*
1

—3BIm  —5BIm  Im AR — NP

47



48

5 p-block separable convex optimization problems

In the following we consider the multiple-block convex optimization:

1=1 1=1

The Lagrangian function is

p p

L(zy,. .. wp, A) = Y Oi(x;) — AT(ZAM —b),

1=1
which is definedon Q= []}_,; X; x A, where
§Rm’ if Zle AZZE,,, = b,

A =
%T, if Zle AZZCZ Z b.
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Let (27,...,x,,\") € € be a saddle point of the Lagrangian function, then
Lyea(xys- o xp, A) S L(x], .., 20, A") < Lyex; (1, -+, Tp, A7),
The optimality condition of (5.1) can be written as the following VI:

w* € Q, 0(x)—0x*) + (w—w)'Fw*) >0, YVwe, (52a)

where

(@) o) [ 4

w=| - , x=1 |, Flw)= :T , (5.2b)
Tp —A, A

Y, \7»/ \ 37, A — b

and . .
O(z) =) 0i(z;), Q=]]axA
i=1 i=1

Again, we denote by {2* the solution set of the VI (5.2).
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Primal-dual prediction for p-block problems

A Primal-Dual prediction for (5.1) . A natural consideration of Prediction

With given (Alx’f, AQCCS, e ,Apa:];, M%) find WP € Q via
( 5:]f € argmin{@l(xl) — m?A?Ak + §||A1(a:1 — aslf)||2 | 1 € Xl};

75 € argmin{02(z2) — 23 ATNF + Z|| A1 (&F — %) + Ao (za — 25)|1? | 22 € A2}
, 5:? € arg minxiexi{&;(azi) — :CZTAZ-TA]“ + g” Z;;ll Aj(ilj’? ) + A;(x; — .:c |2}

53]13 € argming, c x, {0p(zp)— nggAk o 5 | Z (57 k)‘|‘Ap(xp - xk)HQ}

| M =Py [\F - B( i Aj:ig? —b)].
(5.3)

T S I3 4 B X . AT 0 B AR IR L E T sl E — iR Fr oK g
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Analysis for the P-D Prediction | First, for the primal part of the predictor,

1—1
it € arg min{@i(xi)—x?A?)\k—l—gH ZAJ(i?—x?)+Az(xz—xf)\]2]xz € X}

j=1

According to the optimality lemma, the optimal condition is :'i:,i~C € X, and

0i() — 0u(2) + (s — )T {—ATNE 1 BAT (37 A5 — )} > 0,

j=1
for all ; € Xj. It can be written as & € X; and
0:(w:) =0 (27 + (i —37) T {—AT N +BAT (D) A (& —))+ AT (A"=A")} > 0,

j=1
(5.4a)

for all z; € X;. The dual part of the predictor, N = Py [)\k — B( ?:1 Ajij’; — b)}

2N = argmin{H)\ — [)\k — B( ?ZlAjfcf — b)} H2 | S A}.

The optimal condition is

e, A=M)T{(ZE AEE —b)+ (A =25} >0, YA€ A (54b)




Summating (5.4a) and (5.4b), for the predictor Nk generated by (5.3), we have Wk e Q,

0(z)—0(2")+ (w—a")TF(@") > (w—u")'Q(w" —a"), Yw e Q, (5.5a)

where
[ BAT A, 0 - 0 AT
BA3 A1 BA3 A 5 As
BA A1 BAJAy -+ BAJA, A}

\ 0 o - 0 ir,)
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6 Translation of the correction variables

The optimization problem (5.1) has been translated to VI (5.2), namely,

w* € Q, 0(z) —0(z*) + (w—w*) ' F(w*) >0, YweqQ.

For the easy analysis, we need to denote the following notations:

(\/BAl

0

Lo

Accordingly, we define
=={¢| &= Puw, weQ},

and

0

Vv BA2

[1]

VBAp
0

0

0

(1/B)Im )

¢E=Pw=

/\/thm\
VBA2x2

VBApzp

\ IV/B)X )

53



Using the notation P in (6.1), for the matrix () in (5.5b), we have

(]m 0 . () I, \
I, I " - Iy,
Q=P"'oP, where Q= 0 - (6.2)
\ 0 0 - 0 I.)

Thus, for the right hand side of (5.5a), we have
(w—)QW" — ") = (w—a""PTOP(W" — &%)
= (-9 - M.

Then, it follows from (5.5) that we have the following VI for the P-D prediction:

W* e, 0(z)— 0" + (w— ") F(a")
> (E-E9"0(" =¢&", vwe. (693

where Q is given in (6.2).
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Prediction-Correction Framework for VI (5.2).

1. (Prediction Step) With given w” and 5’“ = Pwk, find w* € Q such that

with @ € REFMX(P+1)m anq the matrix Q7 + Q is positive definite.

2. (Correction Step) With the predictor 10" by (6.4a) and gk — Pw", the new
iterate 11 is updated by

ghtt = ¢F — M(eh - €M), (6.4b)

where M € RPTLmX(P+1)m g 3 non-singular matrix.
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Theorem 2 For the matrices Q and M in the algorithm (6.4), if there is a
positive definite matrix H € REP+DMX(p+)m g 0h that

HM = Q (6.5a)

and
G:=0T +90—- MTHM =0, (6.5b)

then we have
JeFHt — gy < N6 — €N — lIE" = €M, vEreE.  (69)
Proof. Setting w in (6.4a) as any fixed w* € {)*, and using
(0" —w*)' F(w*) = (0" —w*)" F(w*),
we get

(EF—e)TQ(eF %) > 0(aF) —O(u*) + (@F —w*) T F(w*), Vuw* € QF.
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The right-hand side of the last inequality is non-negative. Thus, we have

(€F —€)TQ(E"F —€8) > (¢F —eM)TQ(eF —¢F), vereE" (B)
Then, by simple manipulations, we obtain

l€" — €3 — 11€"" — €713

=€ =€l — 1" - €)= M(EF - €M)y
= 26" - €07 - € — IM(E" €M)y
> 2" - ENT (" — &) — IM(E" €M)y
= (€ -NNQ" + Q) ~ M HM|(E" ~¢€Y)
=" |lg" = &"g-
The assertion of this theorem is proved. L]

We call (6.5) the convergence conditions for the algorithm framework (6.4).

The inequality (6.6) is the key for the convergence proofs, for details, see [14]

57
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7 A special correction
For given Q which satisfies Q7 + Q > 0, we chose D and G, such that

D=0, G=0,  D+¢=0"+0.
Then, the correction matrix M in (6.4b) is given by

M=9 Tp.

EFETRERN 0 < D, WEMABHE!  THEEANEUABIE[14]F “E” R M

First, we give some correction examples which satisfy conditions (6.5) in Theorem 2.

In order to simplify the notations to be used, we define the following p X p block matrices:

L m . I = _ - . (71)

f o0 S |
\[m I, .- [m) \0 .0 [m)

We also define the 1 X p block matrix

E=(In Inm - In) (7.2)



Using the notations (7.1)-(7.2), the matrix Q in (6.2) has the form

L &7 . T+&Te &7
Q = and Q@ +Q= - (79
0 In E 21,

In order to construct a convergent algorithm, we need only to give the matrices M and H

and to verify the convergence conditions (6.5)

By setting

v~ T 0
M = : (7.4)
—vEL™T I,

For the above matrices @ and M, the remaining tasks is to find a positive definite matrix

‘H, such that the convergence conditions (6.5)are satisfied.

(7.4) PRy M ZEATE[14] F “IE” K.
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How to improvise a correction matrix M ? | Because HM = O,

H=0oM '

There is a block lower triangular matrix M which satisfies the convergence condition ?

The inverse of a triangular matrix is also a triangular matrix.

o[ X0
Y I,
QM ™1 should be a symmetric matrix
. L &t X 0 LX +&TY &F
H=0OM "~ = =
0 In Y I, Y I

Thus, Y = Eand X = S~ 1£7T, S is a undetermined positive definite matrix.

. S~tct 0 £~'s 0
M = and thus M =
E Im —&L7ts I,

60
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HREE T TR, IS = vIBATLT, EATE =R T H.

Lemma 3 For the matrices Q and M given by (7.3) and (7.4), respectively, the matrix

1ect+ete g
H = with v € (0,1) (7.5)
E I

is positive definite, and it satisfies HM = Q.

Proof. It is easy to check the positive definiteness of H. In addition, for the block matrix O
in (6.2), we have

lepT v e7e g7 v 0
HM =
£ L, —vEL™T I,
Jo
0 In
The assertions of this lemma are proved. L]

XEEHRAOMMH, EEBHE Q" + Q- M HM - 0? TFERE—T.




Lemma4 Let Q, M and H be defined in (6.2), (7.4) and (7.5), respectively. Then the
matrix

G:=(Q"+Q) - M"HM (7.6)
is positive definite.

Proof. By elementary matrix multiplications, we know that

- - Lt 0 vt 0 vI 0
M™HM = Q M = — — D.
E I, )\—vEL™ T 1, 0 I,

Then, it follows from £ + £ =T + E1 € (see (7.1)-(7.2) ) that

G = (Q"+9Q) — M"HM
B ct+rc & vL O (= I+ e £
E 21, 0 I E I,

Thus, the matrix G is positive definite forany v € (0,1). O

62



Finally, correction step can be written

Pt =P — M(€F - €. (7.7)

Lemma 3 and Lemma 4 have verified the convergence conditions (6.5) and thus the key

convergence inequality (6.6) holds. The algorithm (5.3) & (7.7) is convergent.

Recall the respective definitions £ and £ in (7.1) and (7.2). We have

(I, —-I, 0 0 )

o 0
: : . =1,
\ 0 0 I, )

and



64

Thus

(VIm —vIm 0 0 )
0 vl )
v~ T 0 "
M = — : y . . (7.8)
—vELT I, ; : . —vl,, O
O - 0 v, O
\—vlm O 0 Im)

By a manipulation, we have

/A1x’f+1\ (Alx’f\ (me —vl,, O 0 \(Am?lf —A1i]f

AQCBS_H AQLU]; 0 - 0 Agxg — Agffjk
_ _ , (7.9)
: : ) —viy,
\Ap$§+1) \Apxgj K 0 . 0 VLn/}KApxg——Apig
and

ML = NF L uB(ALal — A1EY). (7.10)
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8 More Choices based on the predictions

RE O " MR, MERKIEEN MG EHT ! 2IEESHH.

The matrix Q in (6.2) has the form

L & . T+ETe &7
Q = and thus Q" + 0=
0o I, E 21,

To further analyze the correction steps associated with the correction matrix M,
let us take a closer look at the matrix Q_T.

According to the primal-dual prediction (5.3), the matrix Q in (6.2), we have

—1
. LYo L0
o T — = : (8.1)
E In &L I,



and

T 0 O I

LT 1, ) Lm0
o --- 0 I, 0
\—Im o --- 0 I, )

The calculaton M = Q1D is essentially very easy for different D |
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Since

. T+&Ere &
Q + Q= :
E 21,
it can be decomposed as
- vl 0 (1-v)ZT+&e &
Q" + Q= +
0 I, E I,

The both matrices in the right hand side are positive definite. If we chose

vl 0 (1—-v)IT+ETE ET
D = andthus G =
0o I, E I,

it is just the correction in Section §7.
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Conversely, we can also choose

1—-v)Z+ETE & vl 0
D = andthus § =
E I, 0o I,

and thus get the another correction method.

There are many positive definite decompositions of ol + Q, for example,

- (1—-v)Z 0 v+ ETE Er
Q" +Q= +
0 (1 —v)ly E (14 v)ly,
and

Q"+ 9=D+G=a(Q"+9) +(1—-a)(Q" +Q), ac(0,1).



9 Conclusions

o RMFEARIREPERN— i BHE “MWELMUR S R E A BT VI 1 PPA
MAEE", BREEMET ST EFAENTHPPAR L WEEHHARE[6]). BFERX
i 7 —Le A o td 3 AR BE 18 T BT AR IE BB FERY /334 1, 5], BIFEF 12021 A
LA IE A RE T RiARBE HIRFA [19]. BRITEATRMRXHFN G ENIZEE
#l#Y PPA - (Customized PPA).

o XIFUMFERE Q AIEXFREVFUN-IEFIE, FIA S —HEZRE R UER S, 547
H IR 7E F AR FERA (Xiaoming Yuan) 2012 £ SIAM #{E S ARV SCE [15] 1, R E A
EFRBI—Li3[2, 10, 11, 12, 18], FRAXNERIERALE . BB A% —IE
2 BAREAFFSYLE BBEAR 2013FISERAZE, LUGEESEHMER
B “ SR X TR &8I PPT A,

o FRAEERHMMEBIRBXNGE—IER, 27 2016 FE(ERHERZFR) W
HHIPCILE 6] . 2018 FEHRA (EEFFIR) NEATE “BMFFRXEHE
SE 205771, I AREI G EE A LA X MEZRIEE & S AU S, &
SRR ER B I G —HESE A = T AN R EERA 2018 S 7E COAP BUSIE [17].

o M\2018EFFIE HEBCHREFNIL 9+, REHASG—IEREAWEEELETE
B RIRW S EE “E” .t IR B E RN TN Q &1 i B WS & H IR IESE
BE M. {\F45 N\ —FhatE LA B 1 Fb B 3



o 2022 FH)FKARMITAMIRER A ARE. FiFZXAEFRRFERME ERS &
FHRK, SE—LHNEE RGECERREEER TENM R ST REZE.

o FATMNFUNEEFEHE QT +Q - 0%, RIEHRH (2.2a), HM = Q, 1B
H=QM™ '

E79 H RIEERER, wxfir. N\ ERANER, H AN EET Q. BELIETE
FQT, PER—NFFER” EEREMR. HANGXANEEEMER D NEAF

H=QD 'Q".
tbi EEAR, ®158 M~ = D17, At
M=Q TD.

XA, & (2.20) HE. XANERMNABE I0FEFIREE. HEFFEEEEN DK
Z IR B REFE.

o Eit, HNEAHER R D BAHARM 4 HE—TWESMEFHPRI M HM,
MTHM = (DQ™ Y (@D~ 'Q") (@' D) =D.
EREEEMAET 2018 KIZ HAH JIRIIH X F, ‘RBERIEL—T.



o FIF _E3XFN(2.2b), XNMFEHIEE R D REERHE
0<D<QT+Q (A 00<G=QT+Q-D)

AT LAT . BifX —5%, 15m T A 2022 F LKA @K, Efn A X iR, 18
EFRNEZ, FBEAAR.

o 7Lk TR LR ZHHRIEERE D LIS, tRIBFHER Q F1 D, ¥R EZERE H F1 M 1£15
HM=Q f MTHM = D,
BB RRIEZ T

o XHERY M F1 H: ATLURI KR T ERIAER H124R 153,

HM = Q, HM = Q, H = QD 1Q7T,

{MTHM = D. ~ {QTM = D. = {M — Q~TD.
o EFAREHHEFMIENE D (XIFERS) B AENRERE. BNk,
D =alQ" +Q], a €(0,1).

o REWE 5TIFIA, W—MRZ ML ROMLLIEIRE, KA primal-dual Fiul, @] /Y
KiEFH N ZEADMM LR W ZEANEE]. BINTFEN QT EXIEEEE. B2, ER
ZEHIIRIE. AT ERNRE RIEEERD, Xi5al 55 !
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o FMVHFAMER “TUN-RIE”, REZAFMLMNMRDBIKIE. ENZhZHHRIRM, 125050
RRIE. LB R —HIIE, SAWEBEAAR! ZBIEFIN, BT o) 3 X
E; 2 REFKRIE, 81 TWS 7 E.

o FUM-1RIEF 7ABR AT AR SRR BRI RAVB)RE, X A] LAR SRR AN F R A (a]
A &N —REMEE SR 2 F )@, FIREMFS AT 2% —.

o EREREI MEZSASTMAER? IFEH ADMM FERKRIFMR AT 77 BRIFY
ROALIEEE, AT 5- T AXIRBIWFERIENRZ B HEIEE KM SM Lt AR
a9 ADMM RS EEES, A IXTIBILZ ZRAV.

e Question A. In the prediction step, how to arrange a “good” prediction matrix whose matrix Q
satisfies

o' + 90 >~ 1T.

e Question B  For the given prediction matrix O, what are the criteria for choosing matrix D

which satisfies

0<D=<0l+0.

BN ARERNSEERERNN R, SHREE, AXTBEHITELE.
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