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1 Prediction-Correction Framework

HNE LM M AR OE KD
min{f(u) | Au=10b (or > b), u € U}
URBERATSTER
w* €Q, 0(u) —0u*)+ (w—w ) Fw*) >0, YweQ.

— AT
w:<u>, F(w)z( A ) and Q=U x A.
A Au —b

A=R"(Au=0) ZFE A=RT(Au>b). BEARFHEFFHEAR

wo=(0)0)-(0)

H g3 2 R XTFREY, Btk 3(1B
(w— o) (F(w) — F(@)) = 0.

Heh

(1.2a)

(1.2b)
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Prediction-correction framework for the VI (1.2)

[Prediction Step.] With given (essential variable) fuk, find a vector " € € such that
0(u) —0(@") + (w—0") F(@") > (v—3")T Q" =), Yw € Q, (1.4a)

where the matrix () is not necessarily symmetric but QT ~+ () is assumed to be positive

definite.  (We focus on the case that () is asymmetric). Q I FE PE
[Correction Step.] Find a nonsingular matrix M and update v by M RIEFERE
P = 0F — MW" - o"). (1.4b)

Convergence conditions
For the matrices () and M used in (1.4a) and (1.4b), there exists a matrix H > 0O such

that H SE¥FErE
HM = Q, (1.5a)
and G R FE %

G=Q"+Q-M"HM = 0. (1.5b)




1.1 Convergence

Theorem 1 Let {fuk} be the sequence generated by the prediction-correction framework

(1.4) under the conditions (1.5). Then, it holds that HSe#3EE G Mm%
(0" — 0|5 < [[0° — o™ |3 — ||v° = 0F||E, Yo e V. (1.6)

Proof. Using () = H M (see (1.5a)), the prediction step can be written as

" € Q, 0(u)—0(@")+(w—a") T F(@") > (v—0"THM " — %), vw e Q.

Then, it follows from (1.4b) that Q=HM

" € Q, 0(u)—0(@")+(w—a")TF(@") > (v—3")TH(W" — "), vw e Q.
Setting w = w™ in the above inequality, we get
(" — " THYTH (" —0*) > 0(@") — 0(u*) + (0" —w*)'F(@"), Yw* e Q.

Because (0" — w*)TF (@) = (" — w*)TF(w*), it follows from the optimality of



w* that 0(@") — O(u*) + (@° — w*)TF(w*) > 0 and thus
(W* =" THYTH@" —v*) >0, Wt eV (1.7)

F b= ¢ =" and d = v* in the identity

Settinga = v
2(@—b)" H(c—d) = {lla—dllz = b —dllar} = {lla — el — [Ib— [z},
we know from (1.7) that

L [ [ [ [ L P K

For the right-hand side of the last inequality, we have

L e Ll I
(1.4b) k ~k k ~k k ~k
= o =0 = I = 0") = M -0
= 20" = THM@W" — %) — (° = ") MTHM (" — %)
= (" =@ +Q - M HM)(v" - ")
(1.5b)

= 0" = 5F||2. (1.9)

Substituting (1.9) in (1.8), the assertion (1.6) is proved. []



2 Constructing M from the conditions

2.1 Construction from the condition (1.5a)

Note that the condition (1.5a), H M = (), can be rewritten as
H=0QM™1 (2.1)

Since the norm matrix H is required to be symmetric and positive definite, the
condition (2.1) implies that A should be representable in form of

H=QD'Q", (2.2)

in which the matrix D is a undetermined positive definite matrix. Indeed, by
comparing (2.1) with (2.2), we know that M ! = D=1Q' and thus

M=Q 'D. (2.3)

Hence, although the matrix D in (2.2) is still unknown, choosing M as (2.3) can
ensure the condition (1.5a).



Now, we investigate the restriction on D to ensure the condition (1.5b) with the
matrix M given as (2.3). Notice that

M"HM = (DQ™H(QD'Q")(Q~"D) = D. (2.4)
With (2.4), then the condition (1.5b) is reduced to
G=QT+Q-MTHM =Q" +Q - D = 0. (2.5)

Hence, to ensure the condition (1.5b), the only restriction on the positive definite
matrix D in (2.2) is
0<D=<Q"+0Q, (2.6)

In other words, whenever () is given and it satisfies QT + @ >~ 0, then both H
and M can be constructed via the following steps:

HM=@Q, HM=0Q, H=QD™'Q",
= = (2.7)
MTHM=D. QTM=D. M=Q TD.
Through this construction, both the conditions (1.4b) and (1.5b) are guaranteed

to be satisfied. Note that once the matrix D) is chosen according to (2.6), the



matrices H, M and (G are all uniquely determined. Then, with the specified
matrix M in (2.3), the correction step (1.4b) and thus the prediction-correction
framework (1.4) is also specified as a concrete contraction splitting algorithm for
the VI(1.2)-(1.2b).

2.2 Construction from the condition (1.5b)

Alternatively, we can from the condition (1.5b), G = QY +Q — M*HM = 0, to
construct the norm matrix A and the correction matrix M. Again, with a given ()
satisfying QT + () > 0, we can choose the profit matrix G such that

0<G=<0Q+0. (2.8)

Denote

A=Q"+Q-aG, (2.9)



which is positive definite. According to (1.5b), we know that the matrices H and
M should satisfy

MTHM = A.

Recall the condition (1.5a): H M = (). Thus, with a chosen G satisfying (2.8),
H and M can be constructed vis the following steps:

MTHM=A, QTM=A, M=Q TA,
& & (2.10)

HM=Q. HM=Q. H=QA Q™.

Then, with the constructed matrix M in (2.10), the correction step (1.4b) and
thus the prediction-correction framework (1.4) can also be specified as a concrete
splitting contraction algorithm for the VI(1.2)-(1.2b). Again, with a given GG
satisfying (2.8), the matrices 4 and M are both uniquely determined.

-10



2.3 Choices of D and G

It is interesting to observe that the proposed two construction strategies can be

related via the relationship
D=0, G=0, and D+G=0Q"! +Q. (2.11)

Hence, once D is chosen for the construction strategy in Section 2.1, the
corresponding (& given by (2.11) can be used for the construction strategy in

Section 2.2, and vice versa.

Technically, there are infinitely many such choices subject to (2.11). For example,

we can choose
D=a[Q@" +Q] and G=(1-0a)[Q" +Q], ac(0,1).

We will elaborate on the choice D = G = £[Q” + Q)] in Section 3.3.3.

- 11



2.4 Implementation of the correction step (1.4b)

Note that the correction step (1.4b) can be rewritten as
QT(,Uk:—l—l . Uk) _ QTM(@k . ’Uk).

To implement the correction step (1.4b) with the constructed two choices for M ,
e, M =Q TDin@3)and M = Q1 Ain (2.10), we need to solve one of

the following systems of equations:

QT (vFT — o) = D(* — ok, (2.12)
and

QT (vFT — o) = A% —vF). (2.13)

Hence, although D and GG (thus A) can be chosen arbitrarily with the only
constraint (2.6) or (2.8), it is preferred to choose some model-tailored ones that
can favor solving the systems of equations (2.12) or (2.13) more efficiently.

-12



3 KEFINARI=AT 7 BRAPL 0]

We apply the strategies proposed in Sections 2.1 and 2.2 to a separable convex
optimization problem, and showcase how to construct the norm matrix H and the

correction matrix M when the matrix () is given.

3.1 HEMETAFN

We consider the three-block separable convex optimization model with linear
constraints

min{6i(z) +02(y)+0s(2) | Axr+By+Cz=b,z € X,y € Y,z € Z}, (3.1)

Clearly, it is a special case of the canonical convex programming problem (1.1), and the VI

(1.2)-(1.2b) can be specified as the following:

w* €, Ou)—0u")+ (w—-—w)" Fw*)>0, YVweQ, @32

-13



where

(=) ()

x

Yy —B* )\
w = , u=1| y |, Flw)= ,  (3.3a)

—CT\

z
\)\) \Aa:—l—By—l—C’z—b)
with

O(u) = 01(x) + 02(y) +603(2), Q=X XxYxZxR". (3.3b)

Let the augmented Lagrangian function of the model (3.1) be
£g’] (z,y,2,\) = 01(x) +0(y) +03(2) — \'(Az + By + Cz — b)
—|—§HA£—|—By—|—Cz—bH2 (3.4)

with A € ™ the Lagrange multiplier and 3 > 0 the penalty parameter.

- 14



BRI B R ENE

= argmin{ﬁ[;] (z,y%, 2% \F) |z € X},

YRt € arg min{ﬁ[g] (2R y, 25, M) |y € Y,
< (3.5)
ZFtl ¢ arg min{ﬁg’] (2Rt gt 2 \F) | 2 € 21,

Netl =\ (Aajk—H + Byftl 4 O+l — b).

\
However, the splitting scheme (3.5) is coarse in sense of that its convergence is
not guaranteed as shown in [2].

3.2 ETHIEH B ADMM HFGHER Q

Our construction starts from the coarse splitting scheme (3.5) which can be
rewritten as the prediction step (1.4a) and hence the corresponding prediction
matrix () can be discerned. For this purpose, we first consider the subproblems
related to the primal variables in (3.5), and rewrite them as

-15



a® = (2%, 9%, 2%) € X x Y x Z. Namely, we have

2

ik e argmin{ﬁg](a:,yk,zk,)\k) x € X},

§ 7" €arg min{ﬁg’] (3%, y, 25, N%) |y € Y}, (3.6)

3k ¢ argmin{ﬁg’] (", 5%, 2, \%) | z € Z}

\

lgnoring some constant terms, we can rewrite the formula above as

y

i* € argmin{0:(z) — 2" AT A" + §||Ax + By* +Cz" —b|)* |z € X},

¢ §* € argmin{62(y) —y" B"\* + gHAick + By + Cz" —b|* |y € V},

| 2F € argmin{0s(2) — 2T CTN* + £||A%" + Bg* + Cz —b|* | z € Z}.



Then, according to the optimality Lemma, we have @* € U and

( 01(z) — 01(2") + (z — 3F) T {— AT Ak

+BAT(AZ* + By* + CzF —b)} >0, Vz € X,

02(y) — 02(5") + (v — ") T {—BTA*

< +BBT(Azk + BgF + CzF —b)} >0, Vye, t
03(z) — 03(2F) + (z — 2F)T{-CT Ak
\ +B8CT(AZF + Bgh +CzF —b)} >0, Vz € Z.
By defining
A= \F — B(AZ* + By* + C2F —b), (3.8)
we have
(AF" + Bi* + C5* —b) — B@* — y*) — C(3* — 2*) + %(S\k SR =0
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Using the VI form (3.3), we get @* € Q and
[ 01(z) — 01(3%) + (z — 3F)T{=ATXF} >0, Vze A,
02(y) — 02(5%) + (y — §*)T{=BTX* + BBTB(§* —y*)} >0, Vye,
—CTA* + BOTB(F* —y*)
BCTC (3F — zk)

(AZ* 4+ BgF + CzF —b)

B(g* — yF)—C(F — k) + %(Xk _AR)

X 93(2)—93(5k)+(z—5k)T{ }20, Vze Z,

M—XWT{ }zm VA€ A.

\
(3.9)

The sum of the underline parts of (3.9) is exactly ("), where F'(-) is defined
in (3.3). Thus, we have

" € Q, 0(u) —0(@") + (w— " F@") > (v—")T QMW" — %), vw € Q,
(3.10)



where the prediction matrix is

BT B 0 0
Q=| BC'B pctc 0 . (3.11)
1
—-B —-C =In
s

Moreover, for the prediction matrix () in (3.11) which is determined by the splitting
scheme (3.6) and the defined \* by (3.8), we have

26BTB  BBTC —BT
QI +Q=| pcT™B 28cTCc -0T |, (3.12)
—B -C 2l

which is positive definite whenever B and C' are full column rank.
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3.3 HETHEH 89 ADMM B9 MR Q

With the prediction matrix () given in (3.11), the prediction-correction framework
(1.4) can be specified as a concrete algorithm for the model (3.1) once the
correction step (1.4b) is specified. Now, we showcase how to specify the
correction step (1.4b) by the construction strategies discussed in Sections 2.1, 2.2
and 2.3. Note that v = (y, 2, \) below.

EE 0< D < QT +Q ALURHBEEBENS X TERE—LflFmE.
3.3.1 HMEHZE |

Based on (3.11) and (3.12), and following the strategy in Section 2.1, we can

choose
(VBBTB 0 0
D = 0 vBCTC 0 (3.13)
1
.0 0 gl

with O < v < 1, which is positive definite whenever B and C' are both full

-20



column rank. Recall the correction matrix M in (2.3). Then, a concrete splitting
contraction algorithm for (3.1) can be generated as below.

Algorithm 1 for the model (3.1)

[Prediction Step.] Obtain (¥, §/*, Z*) via the direct extension of the ADMM (3.6)
and define \* by (3.8).

[Correction Step.] QT (v* 1 — v*) = D(o% — v¥).

BBTB gBTC —BT

)
(BBT 0 0 B C —4In
QT=| o pcTc —-cT |=| o pcTt o 0 C —3Inm |,
0 0 %Im 0 0 5Im/\O 0 In
and
vBBTB 0 0 BBT 0 vB 0 0
D = 0 vBCTC 0 (

0 0




That is, QT and D have a common matrix in their factorization forms above.

Hence, to implement the correction step (1.4b), i.e.,
T/ k+1 k ~k k
Q (U - v ) — D(U —v )7

essentially we only need to consider the even easier equation

B C —5lnm yhtl — yF vB 0 0 gk — y*
0o C —%Im Zhtl _ Lk = 0 v(C 0 3k _ 2k
0 0 In Ao+l _ 2k 0 0 In e — \E
The above system of equations equivalent to
Imn Im —%Im Bykt+l — Byk vl,, 0 0 Bik — Byk
o In —%Im Czhktl _Czk | = O vl,, O Czk — CzF
0 0 In AEF+1 _ Nk 0 0 Im P

We can get (ByFt1, CzF+t1 \k+1) py a back-substitution.
Y

-22



3.3.2 WEHZEI

Based on (3.11) and (3.12), and following the strategy in Section 2.2, we can

choose
(1—-v)8B'B 0 0
G = 0 1-v)BcTCc 0o |, (315
0 0 51m

with v € (0, 1), which can be guaranteed to be positive definite whenever B and
(' are full column rank. Note that the matrix (G in (3.15) is precisely the matrix D
defined in (3.13). Furthermore, we have

(1+v)3BTB BBTC —BT
A=Q1+0Q-G= BCTRB (1+v)pcTCc -CT
~-B —C 11,

-23



Recall the correction matrix M in (2.10). Then, another contraction splitting
algorithm for (3.1) can be generated as below.

Algorithm 2 for the model (3.1)

[Prediction Step.] Obtain (¥, §*, Z*) via the direct extension of the ADMM (3.6)
define \F by (3.8).

[Correction Step.] QT (vF 1 — vF) = A(TF — vF).

For the correction step QT (vF1! — v*) = A(3% — v*), we know that

BBTB BBTC —BT

Ql = o BcTc -cT
0 0 %Im
BBT 0 0 B C —%Im
= o BCT 0 0 C —%Im ,
0 0 %Im 0 0 I,



and

(1+v)BBTB BBTC -BT
A = BCTB (1+v)pcTc -CT
—-B —C 51Im
BBT 0 0 (1+v)B C —51m
= 0o pct 0 B (1+v)C —%4Im
0 0 %Im — 8B —BC Im

That is, QT and A have a common matrix in their factorization forms above.

Hence, to implement the correction step (1.4b), i.e.,

QUM — ") = A@" — o),

-25



essentially we only need to consider the even easier equation

B C —%Im yk+1 — yk
0o C —%Im Zhtl _ Lk
0 0 Inm AL )k
(1+v)B C _%Im gF —y"
= B (1+v)C —%Im sk 2k . (3.17)
—BB —BC I'm Ak — \E
The above system of equations equivalent to
I Im —%Im Byktl — Byk
0 0 I'm Al \F
(14 ) I'm —51Im Bijk — Byk
= I'm (14 v)Ipm —%Im Czk—Czk |. (3.18)
S\k _)\k
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Similar as (3.3.1), with the choice of G in (3.15), implementing the resulting
correction step (1.4b) essentially only requires solving the equation (3.18) in terms
of (By*, Cz*, \*). By a manipulation, the correction form can be simplified to

Byk+1 Byk vi, —vli,, 0 B(yk _ gkr)
CFtt | =1 CF | - 0 vli, 0 C(z" — %)

3.3.3 HWEHZEI

Recall the relationship between the matrices D and G in (2.11), and Q7 + Q
given in (3.12). Essentially, the proposed construction strategies in Sections 2.1

- 27



and 2.2 take the same matrix

vBBTB 0 0
0 vBCTC 0
1
0 0 51Im

as D and GG, respectively, and then the other one is determined by (2.11). As
mentioned in Section 2.3, any other choice of D and (G subject to the relationship

(2.11) is also eligible. Let us consider the following specific one:

([ BB™B 1pBTC —1BT \
D=G= %[QT +Q] = | 1gc™B pcTc —icT |, (.19
\ 1B 4O

which are both positive definite whenever B and C' are full column rank. Recall

the correction matrix M in (2.10). Then, one more contraction splitting algorithm

for (3.1) can be generated as below.
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Algorithm 3 for the model (3.1)
[Prediction Step.] Obtain (¥, §/*, Z¥) via the direct extension of the ADMM (3.6)
and define \* by (3.8).

[Correction Step.] QT (vF ! — oF) = 1[QT + Q](v"* — vF).

For the correction step QT (v* 11 — %) = 1[QT + Q] (0% — v*), we know that

s8BTB BBTC —BT BBT 0 0 B C —%Im
QT = 0o BcTc —-cT | = o pBCcT 0 0 C —%Im :
0 0 ir. 0 0 171, 0 0 I,

B
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and

BBTB  BBTC —iBT
1
SR +Q = | 38C"B pCTC —5CT
1 1 1
1 1
sBT 0 0 B 3C —35Im
— T 1 1
= 0 BC 0 B C  —55Im
1 1 1
0 0 ELn —553 —550 Im

Thatis, @' and %[QT + ()] have a common matrix in their factorization forms

above.

-30



Hence, to implement QT (v 1! — v%) = 2[QT + Q] (0" — v¥), essentially we
only need to consider the even easier equation

B C —%Im yk'H — yk
0o C —%Im Zhtl _ Lk
0 0 Im A+ \E
B 3C —z5lm gt — y*
= 1B C —%Im zk 2k . (3.21)
—3BB —3BC  Inm AR — R
The equivalent form
I Im —%Im Byktl — Byk
0 I, —%Im Czk+l _ Ok
0 0 Im A+l \F
Im L Im —%Im Bgk — By*
1

—3BIm  —5BIm  Im AR — NP
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4 ADMM with wider application & easy extensions

Let us consider the general separable convex optimization model

min {01 (z) + 02(y) | Ax+ By =b,z € X,y € V}. (4.1)

ADMM for (4.1) From (y*, A\¥) to (y*+1, AFT1)
(2Pt € argmin{6:(z) — T ATNF + gHAa: + By* —b||*|xz € X},

¢ y*tt € argmin{fa(y) — yT BTN\* + §||Aa:k+1 + By —b||*ly € Y}, (4.2

\)\k:—|—1 — )\k: . 5(A33k+1 i Byk—l—l . b)

T € argmin{0;(z) — T ATAF + §||Aa: + By* —b||?|z € X}
€ argmin{f; (z) — 2T ATNF + gH(Axl'C + By* —b) + A(x — )|z € X}

€ argmin{f(z) — T AT[A\F — B(Az" + By* — b)] + §||A(x —zP)||?| = € &}.

-32



Ignoring some constant terms in the objective functions of the corresponding subproblem-
s, we can rewrite the ADMM (4.2) as

[kt e argmin{6; (z) — 2T AT\t BlA(x —2M)|)? | = € X},

1
. 02(y) —y " B" A\ Tz 4
yk—l—l Eargmm{ 5 b i s yey,,
S| A@T —2%) 4+ By —y")||

/s

)\k—l—l — )\k—ﬁ(ACUk—i—l _|_ Byk—l—l . b)

\
(4.3)
where

Atz = AR gAY + By — b).

The A update form can be also denoted by

APt — Pyrm [)\k —B(A:I:kJrl + BykJrl — b)]

R TIRBFAIEER LI AF ADMM YK &R,
1L L8R ADMM 2L RN AY (4.3).
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4.1 ADMM with wider applications

Let us consider the general two-block separable convex optimization model
min {61 (z) + 62(y) | Az + By =b(or > b),z € X,y € Y}. (4.4)

The linear constraints can be a system of linear equations or linear inequalities.
We define
A R™, it Ax + By = b,
", if Az + By > b.
The projection on A is denoted by P, [-].

For such special A\, the projection on A is clear !

The only difference: ~ Prm(A) = A, Prm(A) = max{\,0}.
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4.1.1 Primal-dual extension of ADMM with wider application

A Primal-Dual Extension of the ADMM for (4.4).

From (Ax®, By® A\*)to (AzF+1, ByF+1 AF+1):
1. (Prediction Step) With given (Az", By®, \F), find w* = (2%, g, 5\1“) via

( gk e argmin{61 (z) — zT ATAF + %BHA(% — M) |z € X},

q 7* € argmin{02(y) — yT BTA* + 28||A(@" — 2F) + B(y — y*) |12 |y € YV},

| A= Py [\F — B(AzF + BgF —b)].
(4.5a)

2. (Correction Step) Generate the new iterate (Az*+1, ByF+1 Ar+1)with v € (0,1) by

Axhtl Axk vl,, —vil, O Axhk — Azk
Byttt | = | By* |- 0o vin 0 || By*—Bgk|. (45b)
et Ak —vBlm O In Ak — Nk

VAR IE, {BARIETE 2R 1R/ !

X E—RKFUN-RIEF A FEHM
TN SE 18 Primal BB 43, B8 Dual EB43, NGt BT LUE) T k.
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4.1.2 Dual-Primal extension of ADMM with wider application

A Dual-Primal Extension of the ADMM for (4.4).

From (Ax®, By® A\*)to (AzF+1, ByF+1 AF+1):
1. (Prediction Step) With given (Az", By®, \F), find w* = (2%, g, 5\1“) via

(N = Py [A\F — B(AzF + Byk —b)],

q ZF € argmin{61(z) — zT AT Xk 4 %BHA(CE — 2|2 |z € X},

| 9% € argmin{62(y) — yT BTNF + 58| A(EF — 2F) + By — v*)|I? |y € Y}
(4.6a)

2. (Correction Step) Generate the new iterate (Az*+1, ByF+1 Ar+1)with v € (0,1) by

Axhtl Axk vl, —vil,, O Axlk — Azk
Byktl | = | By* | — 0 vl 0 By* — BgF | . (4.6b)
Akt Ak — Bl —BLm Im Ak — Nk

TR B A B, BRIEANEEEARE. RIEREEIEER /Y.
TCit =2 primal-dual, I/ dual-primal /55%, &8 A] LA[E) 2% ER (o] jl B 3T
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