HEK O 7 R E TR
P E S FFR LR EARAAE

Bingsheng HE

Department of Mathematics, SUSTech, and
Department of Mathematics, Nanjing University

Homepage: maths.nju.edu.cn/ hebma

RIBMEE 2018 £ 8 A AT STCRYIN 1 2019 4F 5 ALt h A F IR S EIE



AR HFER

o BB LR [a) R min{f(z) |z € X} HAP X E2—1THO%E.
e min-max |5 wiin gleaf{ﬁ(% y) =01(x) —y" Az — 02(y)}
o ZMELRAVCILIL B]R min{f(z)|Az = b(or > b), v € X'}

o GBI min{6,(z) + 0a(y)|Az+ By =b, 2 € X, y € V)

o =NEFRICIILKL
min{6 (x)+602(y)+0s(2)|Ax+By+Cz=bx € X,yc Y,z € Z}

A “BFRL” YIEsi, T “SLAE" BlERM.

ToAFN (V) 2REFIELFE T B FRIEFL K
PiEREE (PPA) R AE RILIRITRIKMEG A




Outline I

e Preliminaries: Optimization problem and VI

e PPA for monotone variational inequality and its beyond

e P-C Methods with parameters requirements in the prediction

e P-C Methods without parameters requirements in the prediction
e Applications for linearly constrained convex optimization.

e Applications for linearly constrained separable convex

optimization.

P-C Method is the abbreviation of Prediction-Correction Method




1 Preliminaries: Optimization problem and VI

1.1 Differential convex optimization in Form of VI

Let {2 C K", we consider the convex minimization problem

min{ f(x) | z € Q}. (1.1)

What is the first-order optimal condition ? '

x* € < z € ()and any feasible direction is not descent direction.

Optimal condition in variational inequality form '

o Sy(z*) ={s e R" | sTVf(z*) <0} = Setofthe descent directions.

o Si(x*) ={seR" | s=x—2a* z €} = Setoffeasible directions.

*eQ* & 2*eQ and S¢(z*)NSy(z*) = 0.

FEFIELLFE LT ENZ: FrERTHREESABE EAGE



The optimal condition can be presented in a variational inequality (VI) form:
e Q, (x—z)'F(z*) >0, Vreq, (1.2)

where F'(z) = V f(x).

Fig. 1.1 Differential Convex Optimization and VI

Since f(x) is a convex function, we have

f(y) = f(2)+Vf(2)" (y—=) andthus (z—y)" (V[f(z)-V[(y)) = 0.

We say the gradient V f of the convex function f is a monotone operator.
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min{f(x)|lr € X}, z*e X, 0(x) —0(z*) >0, Ve X;

min{ f(z)|lx € X}, 2*e X, (r—z)IVf(z*) >0, Vredl.

EFEMOAEEMERHEEERY, GE—EnE THRSE:
Lemma 1.1 Let X C R" be a closed convex set, 0(x) and f(x) be convex
functions and f(x) is differentiable. Assume that the solution set of the mini-

mization problem min{0(x) + f(x)|x € X'} is nonempty. Then,

r* € argmin{f(z) + f(x) |z € X'} (1.3a)

if and only if

v e X, 0(x) —0(z*) + (x — ") Vf(z*) >0, Vx € X. (1.3b)




1.2 Linearly constrained Optimization in form of VI

We consider the linearly constrained convex optimization problem
min{f(u) | Au=b, u € U}. (1.4)
The Lagrange function of (1.4) is

L(u, \) = 0(u) = AT (Au—b),  (u,\) €U x R™. (1.5)

Saddle point




A pair of (u*, \*) is called a saddle point if
Lyepm (u™, A) < L(u*, \*) < Lycy(u, AY).
The above inequalities can be written as

u e, L(u,\")— L(u*,\*)>0, Yuel, (1.6a)
Ae A, Lw" , \*)—Lu",\) >0, VXeA. (1.6b)

According to the definition of L(u, \) (see(1.5)),
L(u, N*)=L(u*, X*) = [0(u) — (A*)" (Au — b)]=[0(u*)—(\*)" (Au*~b)],
it follows from (1.6a) that

w* elU, O(u) —0(u*) + (u—u ) (=AT ) >0, Yueld. @1.7)
Similarly, for (1.6b), since

L(u®, ) =L(u*, A) = [0(u”) — (\")" (Auw” = b)]=[0(u™)—(N)" (Au" )],



we have
MeR™ (A=A (Au* —b) >0, Ve R™. (1.8)
An equivalent expression of the saddle point is the following variational inequality:
w* e, Ou) —0(u*)+ (u—u)T(—ATX*) >0, Vuecl,
{)\* c R™, A=) (Au* —b) >0, Ve R™
Thus, the saddle-point can be characterized as the solution of the following VI:
w* € Q, O(u) —0(u*) + (w—w)'Flw*) >0, Ywed. (1.9

where

— AT\
w:(u), F(w):( A ) and Q=UXxR". (1.10)
A Au — b

Fo)= (4 ) (3) - () = a7 @ - Fa) =o

Since (w — w)" (F(w) — F(w)) > 0 s satisfied, we say I is monotone.




Convex optimization problem with two separable functions I

min{6(x) +02(y) | Ar+ By =b, x € X,y € V}. (1.11)
The Lagrangian function is

The same analysis tells us that the saddle point is a solution of the following VI:

w* € Q, Ou) —0u*) + (w—w)'Flw*) >0, YweN (1.12

where
T — AT\
x
w=1| vy |, u= , F(w) = —BT ) , (1.13a)
A Y Az + By — b
and
O(u) = 01(x) + 02(y), Q=X xYxR™ (1.13b)

The variational inequality (1.12)-(1.13) has the same form as (1.9)-(1.10).
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Convex optimization problem with three separable functions I

min{6,(z) +02(y) +03(2) | Ax+ By+Cz=b,x € X,y € Y,z € Z}.
The Lagrangian function is
L3(x,y,z,A\) = 01(x) + 02(y) + 05(2) — A (Ax + By + Cz — b).

The same analysis tells us that the saddle point is a solution of the following VI:

w' €9, 0(u) = 0(w) + (w—w") F(w") 20, Ywe. (1.14)

where
[ 2 i [ —aTx )
Yy — BT\
w= " lu=|y [ F(w) = o7y ., (1.15a)
\ A/ 2 \ Az + By +Cz —b |
O(u) = 01(x) + 02(y) + 03(2), Q=X XY xZxR"™. (1.15b)

The variational inequality (1.14)-(1.15) has the same form as (1.9)-(1.10).



2 Proximal point algorithms and its Beyond

2.1 Proximal point algorithms for convex optimization

Convex Optimization ' Now, let us consider the simple convex optimization

min{f(x) + f(z) | x € X'}, (2.1)

where 6(x) and f(x) are convex but () is not necessary smooth, X is a

closed convex set. For solving (2.1), the k-th iteration of the proximal point

algorithm (abbreviated to PPA) [13, 16] begins with a given :U"“, offers the new

k+1

iterate x via the recursion

F T = Argmin{0(z) + f(x) + gHCIZ — "% |z € X}, (2.2)

Since "1 is the optimal solution of (2.2), it follows from Lemma 1.1 that

0(x)—0(z" )+ (x—2"TH{VF (" T +r(* T =" >0, Ve X. 23)

12



Setting £ = x* in (2.3), it follows that
(" — )T (& — 2T > 0" — 0(a) + (T — )TV (T,
Since (28t — )TV f(2F 1) > (2F L — )TV f(2*) > 0, it follows that
(" — )T (2P — 2T > 0. (2.4)
Note thatif b’ (a —b) >0, then

la® = b+ (a—0)II* > [IbII* + [la —b]*.

and thus
1Bl* < flall® — fla —o]1*. (2.5)
Setting a = ¥ — 2* and b = 2"t — 2* in (2.4) and using (2.5), we obtain
JeF T — 2|2 < la® — 2|2 — |lz* — 2T, (26

which is the nice convergence property of Proximal Point Algorithm.

In other words, The sequence {xk} generated by PPA is Fejér monotone.

13



The residue sequence {||z* — 2**1||} is also monotonically no-increasing.

Proof. | Replacing £ + 1 in (2.3) with k£, we get

0(z) — 0(z") + (x — ) {V (") + r(a* — 2"} >0, Ve e x.

k+1

letx =« in the above inequality, it follows that

0(z" ) — (") + (" — MV +r(@* -2} >0 @7
Setting x = " in (2.3), we become

0(z") — 0(z"") + (2" — " THY{V ") + r(@" — 2"} > 0. (28

Adding (2.7) and (2.8) and using (2" — 2" TH)T [V f(2®) = Vf(2"T1)] > 0,

(2 — 2" THT (" —2") — (& ="} > 0. (2.9)

k—1 k

Settinga = x — 2k andb = F — Rt

in (2.9) and using (2.5), we obtain

la® —a" T < Yl e — || (2" —a") — (2" — 2" ||”.

14
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We write the problem (2.1) and its PPA (2.2) in VI form

The equivalent variational inequality form of the optimization problem (2.1) is

e X, 0(x)—0(x")+ (z —2")'Vf(z*) >0, Ve e X. (211a)

For solving the problem (2.1), the variational inequality form of the k-th iteration of
the PPA (see (2.3)) is:

Pl e Q, 0(x) — 0(zFh) 4 (x — 2FTH TV f(2F )

> (x — 2T ) r(ah — 2FY),) Vo e X,

(2.11b)

PPA i3 K #E— R FIRY (2.2), K15 (2.1) VR, RANE T T HERIRES.

Using (2.11), we consider the PPA for the variational inequality (1.9)



2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the linearly constrained convex optimization is

characterized as a mixed monotone variational inequality:

w* € Q, O(u) —0(u*) + (w—w) ' F(w*) >0, YweQ. (212

PPA for VI (2.12) in Euclidean-norm | For given w* and r > 0, find w#+1

)

W Q. 0w) — 6 + (w—w TR
> (w — wrFH) T (wh — wht), Yw e Q. |

k41

w is called the proximal point of the k-th iteration for the problem (2.12).

3« w¥ is the solution of (2.12) if and only if w* = w1 K

Setting w = w™ in (2.13), we obtain

(wk—l—l_w*)TT(wk_wk—l—l) > e(uk—l—l)_e(u*)_l_(wk—i—l_w*)TF(wk—i—l)

16



Note that (see the structure of F'(w) in (1.10))
(,wk—i—l . w*)TF(wk—i—l) _ (wk—i—l . w*)TF(w*),
and consequently (by using (2.12)) we obtain

(w* T —w") r(w® — w1 > oW T — () + (W — W) F(w*) > 0.

Thus, we have
(wr Tt — w7 (w® — w1 > 0. (2.14)

By setting @ = w® — w* and b = w*t! — w*, the inequality (2.14)
means that b (a — b) > 0. Similarly as in §2.1, we obtain

lw" ™ — w*|* < flw® —w||* = lw* — w2 (215)

We get the nice convergence property of Proximal Point Algorithm.

The sequence {w"} generated by PPA is Fejér monotone.  As in (2.10),
the residue sequence {||w”* — w”*T1||} is also monotonically no-increasing.

lw® — " TH* < ™7 — w®F = [[(w" T = ") — (" — w1

17



PPA for monotone mixed VI in H-norm '

For given wk, find the proximal point w®*T1in H-norm which satisfies

whtl e Q. O(u) — O(uf ) + (w — wFTHTF(wh) (2.16)
> (w — wFHTH(wh —wF ), Vw € Q, |

where H is a symmetric positive definite matrix.

4 Again, w” is the solution of (2.12) if and only if wh = wrtt MK

Convergence Property of Proximal Point Algorithm in //-norm I

Jw = wff < w® —w | = [lw® - Wt (2.17)

The sequence {w"} is Fejér monotone in H -norm. In primal-dual algorithm [5],
via choosing a proper positive definite matrix H , the solution of the subproblem
(2.16) has a closed form. In addition, for the residue sequence, we have

lw® — ™ G < T = wf = (W = w”) = (Wb = w™

18
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2.3 Splitting Methods in a Unified Framework [11, 17]

We study the algorithms using the guidance of variational inequality.

w* e Q, Ou)—0u*)+ (w—w)'Fw*) >0, Ywe. (2.18)

Algorithms in a unified framework

[Prediction Step.] With given V¥, find a vector W* € ) such that

O(u) — 0(a") + (w — )T F(@") > (v — )T Q" — &%), Yw € Q,
(2.19a)
where the matrix Q is not necessary symmetric, but Q7 + Q is positive definite.

[Correction Step.] The new iterate v* 11 by

P = oF — aM (vF — ). (2.19b)

Zi—IEZRE AT w M v, AJLLZ w AR5, BRI AZ w E D T E.



o WIR (2.19a) HAY Q MFRIEZE, ¥ o° F1 Q PHIFM (2.16) hAy w1 F1 H,
mME—1MRER H & T PPA &%

o MARENR Q MR, BEFE Q" + Q IEE. FATATLAIE (2.19a) FFER & Y
FM g2, 1883 (2.19b) IR IEFREIFTANIE K 2.

Convergence Conditions

For the matrices () and M in (4.3), there is a positive definite matrix H such that
HM = Q. (2.20a)

Moreover, the matrix
G=Q"+Q—-aM"HM (2.20b)

is positive semi-definite.

20

The Key Identity in the convergence proofs is
(a=b)"H(c—d) = 5(la—dlF —lla—cllF) + 5([lc = bllF — [|d — bl)-




Convergence of the algorithms GERATRI L [11, 17])

Theorem 2.1 Let {vk } be the sequence generated by a method for the problem
(2.18) and Ww" is obtained in the k-th iteration. If v*, v**T1 and w* satisfy the

conditions in the unified framework, then we have

Hvkﬂ — U*qu < Hvk — U*qu — oszk — ~k\|?}, Yot e V', (2.21)

EXRIR (2.17) KA HEAF I, AR X K 75752 PPA Like 737%.

KT G —ERTEEREBSMH WA EASE TR E:
e B.S. He, and X. M. Yuan, A class of ADMM-based algorithms for three-block
separable convex programming. Comput. Optim. Appl. 70 (2018), 791 — 826.

o M4, ITAFTRXEARE 20 F, (BEFFIR) 22 EF 15, pp. 1-31,
2018.

PPA XE AL L RE, RILIBIT; RE2BRRT ZRESHEE.
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3 Prediction-Correction Methods |

Our objective is to solve the variational inequality:
w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN (3.1)
For this purpose, we suggest two kinds of prediction-correction methods.

3.1 Algorithms |

[Prediction Step.] With given v”, find a vector w* € € such that
0(u)—0(")+(w—a") T F(wF) > (v—0")TH(v*—o%), Yw € Q, (3.2a)

where the matrix H is symmetric and positive definite.

[Correction Step.] The new iterate pktl by

Pt = —a(v® — %), a€(0,2) (3.2b)

H is a symmetric positive definite matrix. FU{FEXSHBEEKR

22
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3.2 Convergence of the prediction-correction method |

Lemma 3.1 For given vk, let the predictor " be generated by (3.2a), then we

have
(0" —v) H@" = 3%) > |[v* — "3, (3.3)

where H is the positive definite matrix in the right hand side of (3.2a).
Proof. Set w = w™ in (3.2a), we get
(0" — v )T HW" = %) > 0(@") — 0(u*) + (0" —w")TF(@"). (3.4

Because

and
0(a") — 0(u*) + (@° — w*)' F(w*) >0,

the right hand side of (3.4) is non-negative. Thus, we have
{(W* —v*) = (W =" NTHO" -5 >o0.

Consequently, we get (3.3). The lemma is proved. [l



Convergence in a strictly contraction sense

Theorem 3.1 For given V", let the predictor w* be generated by (3.2a). If the

new iterate v* 11 is given by

VP Ha) = oF — a(v® — %), a € (0,2), (3.5)
then we have
[ =t |5 < o =0 [F - gl (@), Yot eV, (36)
where
ai (@) = a(2 = a)|v" — "% 3.7)

Proof. First, we define the profit function by

I (@) = 0% —v* |5 — 0" (@) — v™ I3 (3.8)

24



Thus, it follows from (3.5) that
If(@) = [P" =o' f — (" =) —a(w® = 3M)|F
= 2a(v® —v)TH@W" — %) — o?||of — 5%||%.
By using (3.3) and (3.7), we get
If(@) = 2afv® —"|f — o®[o® — 3%

= a2-a)[lv* =" = g¢(a). D

According to (3.6) and (3.7), the sequence {vk} generated by the prediction-

correction method (3.2) satisfies

[ =" < 0" = 0" |IE — a2 = o)t — 07 |E. Yt e V™.

The above inequality is the Key for convergence analysis !

EXZEF 2.17) KIARNAFN. Ak, 57EEH PPA Like WETH .
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4 Prediction-Correction Methods Il

Recall our objective is to solve the variational inequality:
w* € Q, 0(u)—0u*)+ (w—w)'F(w*) >0, YweN. (4.1

This section presents the second kind of prediction-correction method.
4.1 Algorithms |

[Prediction Step.] With given V¥, find a vector W* € ) such that

(A
—
=~
N—"
|
A
/N
gl

Y (w—a®)TF (%) > (v—")TQ*—%), Yw € Q, (4.2a)

Q=D+K, (4.2b)

D is a block diagonal positive definite matrix
K is skew-symmetric (Rxt#7) Q' +Q =2D

26



[Correction Step.] For the diagonal matrix D > 0 in (4.2b), the new iterate pktl

is given by
Pt = ok — yal M (0P — 5, (4.3a)
where
M=D"'Q, ~€(0,2),

and the optimal step size is given by

lv* — 3%
1M (v — %) |15

ay = (4.3b)

Since M DM = M7 (), we have
IM0F —5)|% = [M(* —5%)]" [Q(* —*)]
and thus

lv* =53

ay, = [M (0F —5F)[T[Q(vF—5F)] " WIRTTE, TEHAEE

27
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4.2 Convergence of the prediction-correction method Il

Lemma 4.1 For given vk, let the predictor " be generated by (4.2a), then we

have
(0" — o) T QW" —3%) > ||v* — o[, (4.4)

where () is given in the right hand side of (4.2a) and D is given in (4.2b).

Proof. Set w = w™ in (4.2a), we get
(7% — o) TQ* — &%) > 0(@*) — O(u*) + (@* — w*)TF(@*). (4.5)
Because
and
0(a¥) — 0(u*) + (* — w*) T F(w*) >0,
the right hand side of (4.5) is non-negative. Thus, we have

{0 =v") = (" = ")} QMW" —7") = 0



and
(v*F — v TQF — %) > (v — )T Q(* — oF). (4.6)

For the right hand side of the above inequality, by using () = D + K and the
skew-symmetry of K, we obtain

(W =T TQUE — ) = (o — 3T (D + K)(* — )

= o* = 3*p.
The lemma is proved. [

Theorem 4.1 For given v*, let the predictor W* be generated by (4.2a). If the
new iterate v* 1 is given by

" (@) = 0vF — aM (v —oF), v €(0,2), (4.7)
then we have

[ — ot |[B < o* =D — g (@), Yor eV, (4.8)

29
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where
g (a) = 20fw” — || — || M (w” — )| (4.9)

Proof. First, we define the profit function by

I (@) = [[v" — o[} = " () — "D (4.10)

Thus, it follows from (4.7) that

9 () = [lv" v D = l(v" =) —aM " ="

= 2a(v® — v )T DM W* — %) — 2| M (" — 3%)||%.
By using DM = () and (4.4), we get

If (@) = 2afv* = o"|p —a? MW" = ")|p = ¢ (a). O

gy (o) reaches its maximum at o; which is given by (4.3b).



J(a)

q(a)

B~y ell,2) MrEE
Since we take o = yarz, it follows from (4.9) that

aif (@) = 2yag[[v* = 8% — v*(ag)* | M (" — 7).

;I I | | ‘ >
@] a* ya‘k \ \ o

(4.11)
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By using (4.3b), we get

. Jv* —~kHD k|12
()2 IM (" =3")B = o 1M (v* —a%)|1%
| M (v* = 5%)||%
= ap[v" = "%
Substituting it in (4.11) we get

gl () > v(2 — y)ajg|v* — 5% ||3. (4.12)

According to (4.8) and (4.12), the sequence {Uk} generated by the prediction-
correction Algorithm |l satisfies

[ =t < oF = oI = (2 = agllvt = 38D YT e VT

ERRIR 2.17) RIUBAFR, FUN-RIEF EZERE R PPA Like WM.

FRLA, XN RSP AR5, B2 3Eeliim (PPA Like) &£,
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5 Methods for Linearly Constrained Problems

This section presents various applications of the proposed algorithms for the

convex optimization (1.4), namely

min{f(u) | Au =b, u € U}. (5.1)

5.1 Augmented Lagrangian Method

lts augmented Lagrangian function is
£5(u.3) = 0(u) ~ X7 (Au— b) + & [ Au — B>

The k-th iteration of the Augmented Lagrangian Method [12, 15] begins with a
given \*, obtain w*T1 = (uF 1 \F1) yia

(ALM) i}k = argmin{Ls(u, \*) | u € U}, (5.2a)
A=\ — B(AT" — D). (5.2b)



In (5.2), o is only a computational result of (5.2a) from given )\k, it is called the
intermediate variable. In order to start the k-th iteration of ALM, we need only to
have \* and thus we call it as the essential variable.

The mathematical form of the subproblem (5.2a) is

min{@(u)—FgHAu— (b—f—%)\k)HQ\uGU} (5.3)

Assumption: The solution of problem (5.3) has closed-form solution or can be

efficiently computed with a high precision.

The optimal condition of (5.2) (k-th iteration of ALM) can be written as wk e Q,

O(u) — 0(a") + (u—a*)T{=ATN* + pAT (AG* —b)} >0, Vu € U,
(A= XA)T{(AT" = b) + 5 (N* = M)} >0, VAeR™

34



The above relations can be written as
T
u— ok — AT )k ~ 1 ~
0(u) — 0(a®) + 3 > A=X)TZOF X%, Vvw e Q. (5.4)
(w) - 6(a*) (AAJ (Aakb> T )
Setting v = X in (5.4), it can be written as (3.2a),
O(u) — 0(@*) + (w — X TF(@F) > (v — P T HWF — %), vw € Q,
with

H =

Correction ' ML = 2k —a(XF —AF), a € (0,2).

- R & B B e T35 (ALM) [13, 15] ATILE{EESE | B4

I.

™|~

R g B HIR FIERIFE A, SR K#EFIoldl (5.2a),
min{6(u) + 5| Au — (b+ $2)|1? |u € U} BHEIMAIE.
E\JHJJ, %ﬁ%%}%zﬁ'lﬁwﬂ’ﬂﬁii Primal- Dual —ﬁ%l‘ﬂﬁﬁﬁﬂl‘]%ﬁi.
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5.2 C-P Algorithm and Customized PPA

Recall the convex optimization problem (1.4), namely,
min{f(u) | Au=1b, u e U}.
The related variational inequality of the saddle point of the Lagrangian function is
w* € Q, O(u) —0(u*) + (w—w*) ' Flw*) >0, YweqQ.
where

u — AT\
w = , F(w) = and Q=U xRN,
A Au—1b

For given v = w® = (u”, \¥), the predictor is given by
[ 4F = arg min{ L(u, \*) + gHu —u*|? |uel}, (55a)
(CPPA) <

~

M = argmax{L([2a" — u*],\) — §H>\ —AF2} (550)

\



The output W* € Q) of the iteration (5.5) satisfies
O(u) — 0(a") + (w — )T F (") > (w — o) T H(w"® — ), Yw € Q.

It is a form of (3.2a) where

T
H = rl A is symmetric
A sl

Assumption: To ensure the positiveness of the matrix (), we have to set rs >
AT Al BT, 2AE]3.20), B w* Tt = w* — a(w® — @F) =& wh
HOKER]RR (5.1), 402R §5.1 FRYFRIEAE, N2 5.2 MIE ZH F A

Chambolle-Pock [3], (CPPA) [5] RTLAB1EE 3% | BU455!

K fi min{6(u) + 5||u — bF |2} MBS B rs > || AT A|| S MIRE

37



5.3 The method does not need rs > ||AT Al [9]

Recall the convex optimization problem (1.4), namely,
min{f(u) | Au=0b, u e U}.
The related variational inequality of the saddle point of the Lagrangian function is
w* € Q, 0(u) —0(u*) + (w—w*) ' F(w*) >0, YweqQ.
where

u — AT\
w = , F(w) = and Q=U xRN,
A Au—10

For given v = w® = (u®, \¥), the predictor is given by

)
4" = arg min{ L(u, \") + zHu —u*|? |uel}, (5.6a)
- 2

(Prediction) <

M = arg max{L(u",\) — %H)\ — N1} (5.6b)
\



The output W* € Q) of the iteration (5.6) satisfies
O(u) — 0(7") + (w — )T F (") > (w — 0T Q(w* — &%), Yw € Q.

It is a form of (4.2a) where

Indeed,

rl 0 0 AT
=D+ K = + .
0 (o))

T [a]fR Hllg{l{@(lb) + Llju — bF||?} KBIARTE. FUMAREEr s > 0.
ue

XEEE I BRIE @3) FEFIERS. EE 9 R ELEBNE.

X B]RR (5.1), ANREERE AT A BIEEEAIR, ST LB §5.2 BIA7E.
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6 Applications for separable problems

This section presents various applications of the proposed algorithms for the

separable convex optimization problem
min{f;(x) +02(y) | Ar+ By =b, x € X,y € V}. (6.1)
lts VI-form is

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN (6.2

where
x — AT\
x
w=| vy |, u= , F(w) = — BT\ , (6.3a)
A J Az + By — b
and

O(u) = 01(x) + 02(y), Q=X x)Y xR (6.3b)
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The augmented Lagrangian Function of the problem (6.1) is
Ls(x,y,\) = 91(x)+92(y)—AT(ASI:JrBy—b)Jrg||A517+By—b||2. (6.4)

Solving the problem (6.1) by using ADMM, the k-th iteration begins with given
(yk7 Ak), it offers the new iterate (y"“rl7 )\k+1) via

(2P = arg min{ﬁg(x,yk, AF) ’ T € X}, (6.5a)

(ADMM) ¢ "t = arg min{ﬁg(aij,y,)\k) ‘ Y € y}, (6.5b)

(AL = \F — B(Az* T 4 ByF Tt — ). (6.5¢)
Let

BB 0
v = Y , H = g ,
A 0 Blm

and

V¥ = {(y*7 )‘*) | (x*,y*, Xk) S Q*}7
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The sequence {’Uk} generated by ADMM has the similar contractive property:

”vk+1

ol [ e [V a2 (6.6)

This is similar as the contractive property (2.6) of PPA for the “simple” optimization
problem (2.1) in §2.1 .

i, 2B FHEEARR ERXTEE (By, \) WL EE.

The residue sequence {||v* — v¥*1|| 7} generated by ADMM is also mono-

tonically no-increasing. In practical, we have

o — o R < ot =P (0T = 0f) = (0 = oM

X< For a simple proof, please see [10]: B.S. He and X.M. Yuan, On non-ergodic
convergence rate of Douglas-Rachford alternating directions method of
multipliers, Numerische Mathematik, 130 (2015) 567-577.



FTE FEAR

BRI YESK IO 2 N 73 0.

6.1 ADMM in PPA-sense

In order to solve the separable convex optimization problem (6.1), we construct a
method whose prediction-step is

O(u) — 0(i%) + (w — *)TF(@*) > (v — )T HW" — %), Vw € Q,

(6.7a)
where
1+60)8BT'B —BT
H = (1+29)5 , (asmalld > 0, say 0 = 0.05).
—B %Im
(6.7b)

Since H is positive definite, we can use the update form of Algorithm | to produce
the new iterate v 1 = (y*T1, A¥+1) (In the algorithm [2], we took § = 0).
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The concrete form of (6.7) is

(

01 (x) — 601(z") + (v — z%)*

(—ATXF) >0,
O2(y) — 02(3") + (y — §°)"

{=B"M + (1+6)BB"B(j* — y*) - B"(\* =A%)} > 0,
| (AZF + B* —b)  —B@* - ")+ (1/B)(NF = A\F) =0.

7\

Let \F = \F — B(Az* + By"* — b), the prediction can be implemented by
(&% = Argmin{Ls(z,y", \*) |z € X}, (6.8a)

A= \F — B(AZ* + ByF —b), (6.8)

O(y) — [20\F — AT B
gk — Argmin 2(:?15 | i 2y yey,. (6.8c)
+=3°8(B(y — y")|

\

XA S 2 B 32 B /5 1a)5k (6.5) ST Y, KA (3.20) IKIE, SNIRIEE.




6.2 Linearized ADMM-Like Method

= FielRl (6.8c) RIBHEMERS, B 5[y — "> RE L26(B(y — v")|1%.

By using the linearized version of (6.8), the prediction step becomes

0(w)—0(T")+(w—a"T F(@F) > (v—")T H(v*—5%), Yw € Q, (6.9)

where
I -B* 1+8sB"B —-B*
H=| " X% 6.7) FHY ( )P . (6.10)
-B i, —B %Im
The concrete formula of (6.9) is
[ 01(z) — 01(3F) + (x — &%)
(_ATS\]{:) > 07
§ O2(y) — 02(5") + (y — )" (6.11)

{=B"NF + (5" —y*) = BT(\" = A"} >0,
| (AzF + B§F —b)-B(§" — ") + (1/B)(\F = 2F) =o0.
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Then, we use the form

P = oF — (v =), a€(0,2)

to update the new iterate v* 1.

How to implement the prediction? ' To get " which satisfies (6.11),

we need only use the following procedure:

/

% = Argmin{Ls(z,y", \*) |z € X},

& M=\ — B(AzF + ByF —b),

- ) ~ S
zﬁ:=AmmMﬂhQD—-DN“—AHTBy%L§Mw—yﬂPIyGJG»

\

A sy — y* |12 B 28 By — o2, AIREKS, BE s > 8| BT B
, AR s MR E

SHAREHR 5 > 0, BK 5 > §||BTB




6.3 Method without s > (3||B’ B||

L5EFE BT B IR, Xurmsk ik, i BE LI #

1T T

For solving the same problem, we give the following prediction:

O(u) — O(a") + (w — )T F("®) > (v — )T Q" — o%), Yw € Q,

(6.12a)
where
sl BT
Q = =D+ K. (6.12b)
—B %Im
Because
sl 0 0 BT
D = and K = :
0 %Im —-B 0

RBIXFERTON, ATAREE | IREAN @.3) FEFHIER R
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How to implement the prediction? ' The concrete formula of (6.12) is

[ 01(x) — 01(FF) + (x — 75)T
(_ATS\k) > 07
02(y) — 02(5") + (y — )"
{=BTX 4 5(% —y¥) + BT(\" = \)} >0,
| (AZF + B* — b)-B(5* — yF) + (1/8)(\F — A\F) =0.

This can be implemented by

_/\

( Gk = Argmin{ Lz(x, y*, \¥) |z € X},

& A= AF— B(AZ* + By* —b),

~ ) S
| 7" = Argmin{bs(y) — (\")" By + S lly —y"[1* [y € Y}

The y-subproblem is easy. X458 EHY 8 > 0, AT BMERHY s > 0.




B2 ), FA15 BIFE §5 F0 §6 iR = FhFuN-#IE A
o MR F o)l PR ERIIZP, ZIRINA i >R (R0 (& M IR, 121
SRR §5.1 0 66.1 AV L.
o INRF KR, WX —Falf ) XMz L, 3
B 3B S RIRTIR, B 7 AIR A §5.2 F0 §6.2 RV IE.
o MR, REFESFH N A FRIRT R, EI 57 AR §5.3 FA
86.3 AV TS A,

fo S X LEAE 2R RE Ju X SERRInlRIZ TH BRI (AR BN
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