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| MAYEARAEAE min{f(z) |zc X} Hif ¥ B—AruE

2. MARBCLILIB)IER min{f(x)|Az =b(or > 1), x € X'}
3. ZEWBINEIE  min{6,(z) +02(y)|Azr+ By =b,z € X,y Y}

4. THAFNRX w* € Q, 0(u)—0(u*)+(w—w*) F(w*) >0, Vw € Q
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A function f(x) is convex iff L&'I'QHQ’EXﬂEZK'Eﬁ I

F(A=p)a+py) < (1—p) f(2)+pf(y)
Vu € [0,1].
Properties of convex function

o f c(Cl. fisconvexiff

fy) = flx) > V() (y — ).

Thus, we have also

)+ V() (y-2)°

e Adding above two inequalities, we get

(y— )" (Vf(y) — V(=) >0.

o f€Cl Vfismonotone. [ € C? V?f(x)is positive semi-definite.

Convex function

e Any local minimum of a convex function is a global minimum.



1 Optimization problem and VI (BE-FELL)

1.1 Differential convex optimization in Form of VI
Let 2 C R™ be a closed convex set, we consider the convex minimization

problem

min{ f(z) | x € Q}. (1.1)

What is the first-order optimal condition ? '

x* e Q) & z* € ()and any feasible direction is not a descent one.

Optimal condition in variational inequality form '

o Sy(z*) ={s e R" | sTVf(z*) <0} = Setofthe descent directions.

o S¢(x*) ={seR" | s=x—2a" z€l} = Setoffeasible directions.

e & 2t eQ and Sp(x*) N Sy(z*) = 0.

FEFIELLFE LN ENZ: rERMTAEESABE LA SE.



The optimal condition can be presented in a variational inequality (VI) form:

e Q, (x—2)'Vf(x*)>0, VreQ. (1.2)

/ x € ) \

A
8

\

®

Fig. 1.1 Differential Convex Optimization and VI

The general form of variational inequality:

e Q, (r—a")'F(z*)>0, Vre. (1.3)

When (z — y)? (F(x) — F(y)) > 0, we say (1.3) is a monotone VI.




BRHENFZRAINAEZRF TERETHRSFN—151E

min{f(x)|lr € X}, z*e X, O(x) —0(z*) >0, Ve X;

min{ f(z)|lz € X}, 2*e X, (x—2*)!Vf(z*) >0, VreX.

EFEMOREEREFHEEERE, SE—EE FHEHYT[ZE:

Lemma 1 Let X C R" be a closed convex set, 0(x) and f(x) be convex func-
tions and f(x) is differentiable. Assume that the solution set of the minimization
problem min{f(x) + f(x) |x € X'} is nonempty. Then,

r* € argmin{f(z) + f(x) |z € X} (1.4a)

if and only if

v e X, O(x) —0(z) + (x — ) ' Vf(z*) >0, Vz € X. (1.4b)

X, FATMIBOMALE)RE (1.4a), $ZHRAK T RIFT D AFK (1.4b).



1.2 Linearly constrained Optimization in form of VI

We consider the linearly constrained convex optimization problem
min{f(u) | Au=1b, u e U}. (1.5)
The Lagrange function of (1.5) is

L(u,\) = 0(u) — M (Au—b),  (u,\) €U x ™. (1.6)

Saddle Point of the
Lagrange Function




A pair of (u*, \*) is called a saddle point if

Lyegpm (’U,*7 )‘) < L(’LL*, )‘*) < LuEU(u7 A*)

The above inequalities can be written as

|

u* €U, L(u,\*)— Lu*,\")>0, Yuel,
A e R L(u", A7) — L(u*,\) >0, VAeR™.

In other words,

uw* € argmin{L(u, \")|u € U},
A* € argmax{L(u*,\)| A € R }.

According to the definition of L(u, \) (see(1.6)),

L(u, \*) — L(u™, \)

0(u) — (A)" (Au = b)] = [0(u”) — (A)" (Au™ — b)]
O(u) — 0(u”) + (u—u”)" (AT A")

(1.7a)
(1.7b)

(1.8a)
(1.8b)
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it follows from (1.8a) that

w* elU, O(u) —0(u*) + (u—u ) (=ATN*) >0, Yueld. (1.9)
Similarly, for (1.8b), since

L(u*, \*) — L(u*, \)

= [0(u*) = (M) (Au* = b)] = [0(u*) — (N)" (Au* —b)]
= (A=2)T(Au* - ),

we have
AeR™ (A=) (Au* —b) >0, Y R™. (1.10)
Note that the expression (1.10) is equivalentto  Au* = b.

Writing (1.9) and (1.10) together, we get the following variational inequality:

w* e, O(u) —0(u*)+ (u—u ) (—ATX*) >0, Vuel,
A* e R™, (A=A (Au* —b) >0, VIeRm.



Using a more compact form, the saddle-point can be characterized as the solution

of the following VI:
w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweD (1.11a)

where

u — AT\
w:( ), F(w):( ) and Q=UXxR". (1.11b)
A Au —b

Because F'is a affine operator and

rer= (53 (0) - ()

The matrix is skew-symmetric, we have

M ROALERR (1.5), 38R T BT AFN (1.11).
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Convex optimization problem with two separable functions I

min{6(x) +02(y) | Ar+ By =b, x € X,y € V}. (1.12)
This is a special problem of (1.5) with

w=| "], u=xxy, A=(4B).
y

The Lagrangian function of the problem (1.12) is
The same analysis tells us that the saddle point is a solution of the following VI:

w* € Q, O(u) —0(u*) + (w—w)'F(w*) >0, YweQ. (1.13)



T
T
u = , Ou)=01(x)+02(y), w=1\| vy |, (1.14a)
Y A
— AT\
F(w) = —BT) , and Q=X x)Y xR™. (1.14b)
Ax + By — b
The affine operator F'(w) has the form
0 0 —AT x 0
Flw)y=10 0 —-B? y | —10
A B 0 A b

Again, we have (w — w)? (F(w) — F(w)) = 0.

Ze ML R AALE)RE (1.12), B3R T BT 55 ANFI (1.13)—(1.14).
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2 Proximal Point Algorithms (4 RE

Lemma 2 Let the vectors a,b € R™, H € R"*"™ be a positive definite matrix.
if bI'H(a — b) > 0, then we have

Il17 < llallz — lla —bliZ- (2.1)

The assertion follows from ||al|? = ||b + (a — b)[|* > ||b]|* + ||a — b||*.

2.1 Proximal point algorithms for convex optimization

Convex Optimization ' Now, let us consider the simple convex optimization

min{f(x) + f(z) | x € X'}, (2.2)

where 6(x) and f(x) are convex but #(x) is not necessary smooth, X is a

closed convex set.

For solving (2.2), the k-th iteration of the proximal point algorithm (abbreviated to

15



1 yia the recursion

PPA) [16, 19] begins with a given x* offers the new iterate z*
r
F = Argmin{0(x) + f(z) + §Ha: — "% |z € X}, (2.3)
Since ¥ 11 is the optimal solution of (2.3), it follows from Lemma 1 that

H(CIZ) o (9(37k+1)—|—(33 o xk-l—l)T
(V"™ 4 r(@t —2M)) >0, Ve e X, (24)

Setting x = x* in the above inequality, it follows that
(mk—i—l —a:*)T’r(xk _:Ck—l—l) Z H(xk—l—l) —9($*) + (:Ck+1 —ZC*)TVf(ZC]H_l).

It remains true by changing the last V f (2*71) to V f(2*). Thus, we have

(zF T — ") T (2% — 2T > 0. (2.5)
Let a = zF — 2* and b= *T! — x* and using Lemma 2, we obtain
[T — 2|2 < |l2* — 2*||* — ||a* — =* |2, (2.6)

which is the nice convergence property of Proximal Point Algorithm.

16
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We write the problem (2.2) and its PPA (2.3) in VI form

For the optimization problem (2.2) , namely,
min{0(z) + f(z) |z € X},
the equivalent variational inequality form is
e X, 0(x)—0(x")+ (z —2")'Vf(x*) >0, VeeX. (27

For solving the problem (2.2), the variational inequality form of the k-th iteration of
the PPA (see (2.4)) is:

"l e X, 0(x) — (2K + (z — 2FTH) TV F(2F )

> (x — a:kH)Tr(:Uk — a:kﬂ), Ve X. (2.8)

PPA BiT kR — R FBY (2.3), K15 2.2) M, KANER T T AEHIRES.

The solution of (2.8) is Proximal Point, it has the contraction property (2.6).




2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the linearly constrained convex optimization is

characterized as a mixed monotone variational inequality:

w* € Q, O(u) —0(u) + (w—w)'F(w*) >0, YweD. (29

PPA for VI (2.9) in Euclidean-norm | For given w* and r > 0, find wk+1

b}

which satisfies

wh T e Q. 0(u) — (LT + (w — wPTHT F(wh )

> (w—w ™ ek —wh ), Yw e Q. (2.10)

k+1is called the proximal point of the k-th iteration for the problem (2.9).

w
4w is the solution of (2.9) if and only if w* = w1 K
Setting w = w™ in (2.10), we obtain

(wkH—w*)TT(wk—wkH) > 9(uk+1)—9(u*)+(wk+l—w*)TF(wk+1)

18



Note that (see the structure of F'(w) in (1.11b))
(wk—l—l . w*)TF(wk—l—l) _ (wk—l—l . ’U}*)TF(’U}*),
and consequently (by using (2.9)) we obtain

(W —w) T r(w" — W) > 0 ) — () + (W —w*) T F(w*) > 0.

Thus, we have
(wh Tt — w7 (w® — wht) > 0. (2.11)

By setting @ = w® — w* and b = w*t! — w*,

the inequality (2.11) means that % (a — b) > 0.

By using Lemma 2, we obtain

lw" ™ —w*[|? < flw® —w*||* — [[w® —w" % (212)

We get the nice convergence property of Proximal Point Algorithm.

19



PPA for monotone mixed VI in H-norm '

For given w”, find the proximal point w®t1 which satisfies
Le, 0(u) — 0w ) + (w—w* T Pkt

> (w—w"THTHWw" —w* ™), Vw e, (213

where H is a symmetric positive definite matrix.

¥4 Again, w” is the solution of (2.9) if and only if w* = w1 Y4

Convergence Property of Proximal Point Algorithm in /{-norm I

Ju+?

—wlf < fJw® —wF = flw® - Wt (2.14)

By using the block-matrix technique, we can get a proper positive definite matrix
H . And the solutions of the subproblems (2.13) have the closed forms.

IR X L

AR SHESE. BEMEHEATENE XY

20



3 From PDHG to Customized-PPA

We consider the convex optimization
min{f(x) | Az =b, x € X'}. (3.1)
The Lagrange function is
L(z,\) =0(x) = X' (Az —b), (x,)) € X x ™. (3.2)

The corresponding variational inequality is

T
r—x* — AT\
e, 6 —0(x™) + >0, Ywe-.
v (x) = 0(") (A—A*) (Aa:*—b) v

where ) = X x R™.

In this section, we assume that the subproblem

min{60(x) + gHa: —al|*|x € X} issimple.

21



3.1 Original primal-dual hybrid gradient algorithm [20]

For given (2%, A\¥), PDHG [20] produces a pair of ("1, \¥*1)_ First,
2R+ = Argmin{L(z, \F) + gnx 2|z e X}, (33a)

and then we obtain \* ! via

ML = Argmax{L(z"T1, A) — Z[|A = X¥||2 | A € R™Y. (3.3b)

S

51

Applying Lemma 1 to the subproblem (3.3a), we get

0(x) — O(x" ) + (z — 2" THT{—ATN 4 (2Pt — 2P} >0, Vo e X
(3.4)

The problem (3.3b) is an unconstrained optimization, thus we have

(Az* T —b) 4+ s(AFTE — \F) =0, (3.5)
and it can be written as

AFFL e R A= DT L (AR =)+ s(AFF =A%)} > 0, VA € R™.

22



Combining (3.4) and (3.5), we get

T
k41 _AT)\k—i—l
k+1 L=
TN (SR (et

r(zhtt — 2F) AT (AR = \F)
+ >0, V(z,\) €,
( S()\k-l-l . )\k:) ( )

where
=X xR™.

The compact form is

0(z)—0(x" )+ (w—w*™HT{F ("™ +Q(w* ! —w)} > 0, Yw € Q,
(3.6)
where

rl, Al .
Q = is not symmetric.
0 si,,

It does not be the PPA form (2.13), and we can not expect its convergence.

23



The following example of linear programming indicates
the original PDHG (3.3) is not necessary convergent.

Consider a pair of the primal-dual linear programming :

min 'z
(Primal) s.t. Az =0
x > 0.

We take the following example

min 1 + 2x9
(P) s.t. x1+xo=1

L1, L2 > 0.

where A = [1,1], b=1,c = [;] and the vector z = [5131]

(Dual)

L2

24
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1
The optimal solutions of this pair of linear programming are x* = [ ] and

y* = 1. Note that its Lagrange function is
L(z,y) = cl'x — y' (Az — b) (3.7)
which defined on Ri X R. (x*,y™) is the unique saddle point of the Lagrange
function.
For solving the min-max problem (3.7), by using (3.3), the iterative formula is
{x’f“ = max{(z" + 1(ATy" - ¢)), 0},
yhtl = gk %(Axk—i—l —b).

We use (29, 29;4%) = (0, 0;0) as the start point. For this example, the method

is not convergent.



,w2 o . w3
A
7 * 4
wlxw We (1,01 o W
0 ’w6 Y., D
w . (0!050) < L] w

Fig. 4.1 The sequence generated by
PDHG Method withr = s =1
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* solution poit
B initial iterate
final iterate

% solution poir
B initial iterate
final iterate

75
2.00 0.0000

Xtr=s=1,2 75, 10, PDHG F EEZ U E

*
[ ]

solution point
initial iterate
final iterate

*
[ ]

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

solution point
initial iterate
final iterate

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
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3.2 Proximal Point Algorithm in /7-norm

If we change the non-symmetric matrix () to a symmetric matrix H such that

rl, AT rl, AT
Q= - H-= ,
0 sil,, A sl

then the variational inequality (3.6) will become the following desirable form:

0(x)—0(z" )+ (w—w* T {F(w" ™+ H (w1 —w®)} > 0, Yw € Q.

For this purpose, we need only to change (3.5) in PDHG, namely,

(Az" L —b) + s(AFH — \F) =0,

28



Because "1 is known, with the given 2* and \*, A\*T1 in (3.8) is given by

Liaqah+t — gy — g

S

)\k—l—l _ )\k L

Thus, for given (2*, A*), producing a proximal point (z**1, \*+1) via (3.3a)
and (3.8) can be summarized as:

(2P = arg min{ L(z, \*) + ng — 2" |z e X}, (3.93)

(PPA) <

N = argmax{L (227! — 2¥], )) — gﬂ)\ — A2 (3.9b)

\

By ignoring the constant term in the objective function, getting zF+ 1 from (3.92a)
is equivalent to obtaining z* 11 from

2"t = argmin{6(z) + g”:v — [a:k + %AT)\]‘:} H2 |z e X}

29



The solution of (3.9b) is given by

Lia(ahtt — gy g

S

)\k—i—l _ )\k o

Assumption: min {#(z) + %||z —a|* |z € X'} is simple

Indeed, under the assumption, the sub-problem (3.9a) is simple.

In the case that rs > || AT A]|, the matrix

rl, AT
H = is positive definite.
A sl

Theorem 1 The sequence {w" = (z*, \*)} generated by the customized PPA
satisfies

Hwk—I—l

—wlE < fw® —w|F = llw® - Wt (3.10)

30



For solving the min-max problem (3.7), by using (3.9), the iterative formula is

{a:k = max{ (z" (AT k—¢)),0},

yhtl =y —l[A(QfC"“+1 x®) — b).

S

’UJ2 A
w” = (0,0;0)
3 1 _ .
L oV w = (0,0;1)
rom w? = (0,0:2)
w3 = (1,0;1)
0e w® = w*.

(0,0;0)

Fig. 4.2 The sequence generated by
C-PPA Method withr = s =1
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% solution point
initial iterate
final iterate

%  solution pt
B initial itere [ ]

final iterat

L1.75
-1.50
+1.25
+1.00 y
-0.75
-0.50

solution point
initial iterate
final iterate

%  solution pc *
B initial itere "]
final iterat

L 2.00
- F1.75
E F1.50
B r1.25
M1 +1.00 Y
rc r0.75
10.50
+0.25
+0.00

0.04
0.02
0.00
-0.02%2

Xfr=s=1,25,10, iIREZEHIH PPA F EERILE
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Remark ' Let the linear constraints become to a system of inequalities.

min{f(z) | Ar =b, x € X'} —, |min{f(z) | Az > b, z € X'}

In this case, the Lagrange multiplier A should be nonnegative. {2 = X" X 3?7_?
We need only to make a slight change in the prediction procedure:

In the primal-dual order:
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3.3 Simplicity recognition
Frame of VI is recognized by some Researcher in Image Science I

Diagonal preconditioning for first order primal-dual algorithms
in convex optimization*

Thomas Pock Antonin Chambolle
Institute for Computer Graphics and Vision CMAP & CNRS
Graz University of Technology Ecole Polytechnique
pock@icg.tugraz.at antonin.chambolle@cmap.polytechnique.fr

e T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

e A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem
with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.



preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F'™* it follows that for any (z,y) € X X
Y the iterates x**! and y* T satisfy

T — T !}'\f + J_ T rli'+ 1 T 'L‘._i_ l i 'L“
s | Fl Cepy M e o ]2,

(5)
where
r phtl B (‘?G(;z:;"*l) e KTykJrl
yk—}—l - 8F*(y"‘+1) - [(Ik—}—l
and . .
. T —K
M= [ Y 6)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].

E# C-P i 3
HA189 PPA i
FE F K b 15 1L
T BTS2 HT

AR IRIAN A,
QB (6)
NHIEERE M %
FRIERE, 4 B
8189 PPA 753£.

B, migEA
B TH 45 & /Y 1
T, FAEARA—
TE TSR AY.

FH CP iR RIFERMEEFEM, & 6 = 0, F3 X RERIEULEL.
Xt 0 e (0,1), WEH % BIERR, 4515 ZF— Open Problem.
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[9] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, New Jersey, 1962.

[10] B. He and X. Yuan. Convergence analysis of primal-dual
algorithms for total variation image restoration. Technical
report, Nanjing University, China, 2010.

Later, the Reference
[10] is published in
SIAM J. Imaging Sci-

ence [13].

Math. Program., Ser. A
DOI 10.1007/s10107-015-0957-3
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On the ergodic convergence rates of a first-order
primal—-dual algorithm

k2,3

Antonin Chambolle!@® - Thomas Poc

The paper
published by
Chambolle and
Pock in Math.

Progr. uses the

VI framework
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1 Introduction

In this work we revisit a first-order primal—dual algorithm which was introduced in [ 15,
26] and its accelerated variants which were studied in [5]. We derive new estimates
for the rate of convergence. In particular, exploiting a proximal-point interpretation
due to [16], we are able to give a very elementary proof of an ergodic O(1/N) rate
of convergence (where N is the number of iterations), which also generalizes to non-

Algorithm 1: O(1/N) Non-linear primal—dual algorithm

e Input: Operator norm L := || K|, Lipschitz constant L ¢ of V f, and Bregman
distance functions Dy and D,.

e Initialization: Choose (x°, y) e X x Y, t,0 > 0

e Iterations: For each n > 0 let

"Ly = PDL o (x, y?, 26" — Xy (11)

The elegant interpretation in [ 16] shows that by writing the algorithm in this form

& 1ZCHIICHER [16] 214 3R1E SIAM J. Imaging Science E AN E.
B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle -point

problem: From contraction perspective, SIAM J. Imag. Science 5(2012), 119-149.
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Proximal point form

2017F7H,FEA
B RXEHRFERD
— Bl EFEEXKE
e EfSmE
—NERESNE B
AR &= A3 A He
and Yuan 12 H H94R
Ik =3 (PPF), &b
I8 [E &R i) .

RE—MRZIT R/
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RS T —3K
BAR%%3.
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University of Colorado Boulder Technical Report, Department of Applied Mathematics

The Chen-Teboulle algorithm is the proximal point algorithm

Stephen Becker *
November 22, 2011; posted August 13, 2019

Abstract

Werevisit the|Recent works such as [HY12] have proposed a very simple yet

on the step-size

powerful technique for analyzing optimization methods.

1 Background

Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization
methods. The idea consists simply of working with a different norm in the product Hilbert space. We fix an
inner product (x,y) on H x H*. Instead of defining the norm to be the induced norm, we define the primal
norm as follows (and this induces the dual norm)

2y =z v, il = llyllv-: = Vg, V1) = V. y)y -

for any Hermitian positive definite V € B(H,H): we write this condition as V > 0. For finite dimensional
spaces ‘H. this means that V' is a positive definite matrix.

Jelly =
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3.4 Relationship to Chambolle-Pock Method

Chambolle and Pock [2] have proposed a method for solving the convex-concave
min — max problem, in short, C-P method. Applied C-P method to the problem
(8.1), it is also required rs > ||AT A||.

CP method. For given (%, A\¥), C-P method obtains z* 11 via
7F L = arg min{L(x, \F) + ng —2F|?2 |z e XY (3.11a)
Then, \**1 is given by

AT = arg max{L([z" T + 7(2F T — 2M)], \) — gHA — M2 A e A}
(3.11b)

where 7 € [0, 1].
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o [FIH-IHBR A #AE ;X(PDHG) (3.3) FIRE EHIAVSRIE S E A (C-PPA) (3.9)
#R =& Chambolle-Pock 7574 [2] 7 AIEX 7 = 0 1 7 = 1 BU45.

o Xf 7 =0 HJ PDHG /574(3.3), §3.1 FE R IRA N BERIEINEL. X 7 = 1 BY
CPPA 757%(3.9), HINSIME §32 F B T41L.

o RIBHAMMIA, MTF 7 € (0,1) I CP 753 (3.11), BT RBER.
X T CP AT —L/\i 5

2020 &9 A

e Chambolle F1 Pock 7E 2010 FZH BIK B min — max [B)@ARY [RIG-XT{E
&, RGBS EET 2RI N AR KBS, #FRACP Fi%.

e Chambolle #1 Pock F7ABIEE—MRA A7 TF2010 &6 B. {1805 EH
BN 0,1 2B, BEXESR, RSB 1 FESL TR 15T
NN X REXELE, B3 XX G AW S FHIT T 5.

o HTRNZERRBIFT D AFRNIKESE RIRLI, SH A 18 CP
7375, AU R T R AFN HAE(H ANFRIEEREFE) ML s 50
(PPA), E Lt M IERRFFRIE 2. N HERY 2010 £ 11 A 4 B, F|A1THE



FERIERABYE—7R, 00-2790, 22 £ Optimization Online _E. [ERY, X5 #
7089 CP /3%, FANE] T APy i+

o SHYE (0,1) [BIHY CP 737K, RENREMRIEUL S, XA a5 7R AR,

e Chambolle #1 Pock fRIRZIN T FHANIBI TIE, — 12 ABHI 2010 F 12 A
21 B, I 1893ZZE7E J. MIV online IER & 3. F {154 E %], Chambolle
A0 Pock X AMRFEBREIF IR TEANHIXE, L1228 7 FHA180IER. F
MO EERNLFRUG, CP ERMABIRESHIAE (0,1) BIHFET.

o 57 RLIBICP 3 AR R B Z AR F {145 BV B B2 ERR. {1 17E20115F
BIIEEE ICCV £, FREEFRA 180 T{EFR R Hb &1L 7 W&t 43 47

(which greatly simplifies the convergence analysis).

o [FXRCP HFZEMEENBZRHEXNNELREENNEMNBITTL
S A 1 E). {1F2016 F£FEMath. Progr. £3RBISCE R, 45455 F
FRAITHY PPA ER%, SLERYS| S FRLFFIB T 22 (In particular, exploiting a
proximal-point interpretation due to [16], we are able to give a very
elementary proof). X 2 R9[16] &FA1 2010 FERIFRENZA 00-2790, 2012 £
& & I 1E SIAM Imaging Science.
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4 Splitting Methods in a Unified Framework

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN. (4.1)

4.1 Algorithms in a unified framework

Algorithmic Framework for VI (4.1)
[Prediction Step.] With given v¥, find a vector W* € Q which satisfying

0(u)—0(a")+(w—a™)TF(w®) > (v—9*)TQ(v*—o%), Yw € Q, (4.2a)

where the matrix () has the property: QT + () is positive definite.

[Correction Step.] Determine a nonsingular matrix M and the step size o« > 0,

update the new iterate by

P = oF — aM(vF — ). (4.2b)

If v¥ = 0%, W is a solution of (4.1).

43



Convergence Conditions
For the matrices () and M, there is a positive definite matrix A such that

HM = Q. (4.3a)

For the given H, M and () in (4.3a), and the step size «, the matrix

G=QT+Q—-aMTHM 0. (4.3b)

4.2 Methods for Linearly Constrained Problems

We consider the convex optimization, namely
min{f(u) | Au = b, u € U}. (4.4)
The related Lagrange function is

L(u,A\) = 0(u) — AM(Au — b),
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and the corresponding variational inequality is
w* € Q, 0(u) —0u*) + (w—w)'F(w*) >0, YweN.

where

u — AT\
w = : F(w)z( ) and Q=U xR,
A Au—10

RKABI—T8 PPA 7574

[ WFt = arg min{ L(u, \¥) + gHu —u*|? |ueU}, (45a)

(PPA) <

N = arg max { L ([2u" ! — u*], ) — gﬂ)\ — A¥||21 (4.5b)

\

Customized PPA '




For given v* = w” = (u”, \¥), the predictor is given by

y

(C-PPA) <

~

\

The output w* € Q) of the iteration (4.6) satisfies

46

4" = argmin{ L(u, \") + %Hu — uk||? luelU}, (46a)

A\¥ = argmax{L([2a" — u*],\) — gH)\ —A"[2} (4.6b)

O(u) — 0(a") + (w — )T F (") > (w — )T Q(w® — "), Yw € Q.

It is a form of (4.2a) where

Q = rl A" is symmetric
A sl Y

The new iterate is updated by

(4.7)



The subproblem (4.6a) is a problem of mathematical form

min{0(u) + gHu —a"|? e U (4.8)

1
where r > (0 is a given scalar and af = uPF + ZAT )Nk
r

According to the correction (4.2b)

the matrix M in the updated form (4.7) is the identity matrix [ .

Then, we have and
H=Q>0 and G=Q' +Q—aM"HM = (2—a)H > 0.
The convergence conditions (4.3) are satisfied. More about C-PPA, please see

& G.Y. Gu, B.S. He and X.M. Yuan, Customized Proximal point algorithms for
linearly constrained convex minimization and saddle-point problem: a unified
Approach, Comput. Optim. Appl., 59(2014), 135-161.
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4.3 Convergence proof in the unified framework

Theorem 1 Let {v"*} be the sequence generated by a method for the problem
(4.1) and W is obtained in the k-th iteration. If v*, v*T1 and W* satisfy the

conditions in the unified framework, then we have

o{O(u) — 6(@*) + (w — )T F(5*)}
1 (8 -
> (o= % — o — o5 I%) + 5 [loF — ¥, Ve € Qag)

Proof. Using Q) = H M (see (4.3a)) and the relation (4.2b), the right hand side
of (4.3a) can be written as (v — ©%)T L H(v* — v**1) and hence

a{0(w) = (") + (w—a")T F(w")} > (v—0")T H(vF =0, vw € Q.
(4.10)
Applying the identity

1 1
(a=0)" H(c—d) = S{lla=dl—la—clz}+5{lle=0l5 = ld=bll},
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to the right hand side of (4.10) with
a=v, b=o% c=0" and d=0"",

we thus obtain
2(’U . ?’}k)TH(,Uk . ,Uk—|-1)
= (Ilo = 0" — o — 0" 1I%) + (0" = a* |3l — ¥ |3).

(4.11)
For the last term of (4.11), we have

vk — 9% |3, — [lo" T — o¥|]3,

= o = 3F3 — I — o) — (vF = oF T3

ok — R — (v = o) — aM (vF — 5F)|[3,

= (=@ +Q) - *M"HM]|(v" — ")
= ook — ¥ (4.12)

Substituting (4.11), (4.12) in (4.10), the assertion of this theorem is proved. []
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Theorem 2 Let {v"} be the sequence generated by a method for the problem
(4.1) and w" is obtained in the k-th iteration. If v*, v*1 and w* satisfy the
conditions in the unified framework (G > 0), then we have

L [ [ el L T P (TS AN O K)

Proof. Set w = w™ in (4.9), the assertion follows directly from
(") — 0(u*) + (0° — w*)" F(@")
= 0@ — 0(u*) + (@F —w)TF(w*) >0. O
FBIXAMEZR, 75 5ERA ADMM 5556 i B SR 2 51 )T BB SR .

e B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the alternating
direction method, SIAM J. Numerical Analysis 50(2012), 700-709.

e B.S. He and X.M. Yuan, On non-ergodic convergence rate of
Douglas-Rachford alternating directions method of multipliers, Numerische
Mathematik, 130 (2015) 567-577.
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5 Special prediction-correction methods

We study the optimization algorithms using the guidance of variational inequality.

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN (51)

5.1 Algorithms () = H, H is positive definite

[Prediction Step.] With given v*, find a vector w* € € such that
0(u)—0(i")+(w—a) T F(aF) > (v—0")TH (" —o%), Yw € Q, (5.2a)

where the matrix H is symmetric and positive definite.

[Correction Step.] The new iterate v*+1 by

Pt = —a(v® — %), a€(0,2) (5.2b)

H is a symmetric positive definite matrix. I
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Since G=(2—a)H, «afvk—o%2 =a(2-—a)|vr —o*%.
The sequence {Uk} generated by the prediction-correction method (5.2) satisfies

[ =0 < 0" ="l — a2 = o)t = 0V E. Wt e V™.

The above inequality is the Key for convergence analysis !

Set a = 1 in (4.2b), the prediction (5.2a) becomes: wrt1 € Q) such that
0(u)—0(u*™)+(w—w™T F () > (v—o™)T H (0=, v € Q.

The generated sequence {v”*} satisfies

L e [ (A A /P (TSR A

EXRIR 2.14) RIUWAFN, BXTH#LTE v BY PPA A
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5.2 Applications for separable problems

This section presents various applications of the proposed algorithms for the

separable convex optimization problem
min{6;(x) +02(y) | Ar+ By =b, x € X,y € V}. (5.1)
lts VI-form is

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweD. (52

where
x — AT\
x
w=|vy |, u= , F(w)= —BT ) , (5.3a)
A J Ax + By — b
and

O(u) = 01(x) + 02(y), Q=X xY xR™. (5.3b)
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The augmented Lagrangian Function of the problem (5.1) is
La(z,y,\) = 6’1(:E)—|—t92(y)—)\T(Ax—|—By—b)—|—§||A:C—|—By—b||2. (5.4)

Solving the problem (5.1) by using ADMM, the k-th iteration begins with given
(yk, )\k), it offers the new iterate (y’f‘l'l’ )\k—l-l) via

(2F = arg min{ﬁg(x,yk, AF) ’ x € X}, (5.5a)
(ADMM) ¢ ¢**t! = argmin{Lg(z" ", y, \*) | y € Y}, (5.5b)
(AT = NP — B(AxP T 4 Byt —b). (5.5¢)
X
w= |y |, v= \ and V* = {(y", \") | (", y", \*) € Q*}.
A

The main convergence result is

L L el e P A
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where
T
H_(BB B 0 )
0 iI,

Ignhoring some constant term in the objective function, ADMM (5.5) is
implemented by

% 2

0 . TAT k
£t = argmin/ ;(x) ! . p2 x € X}, (5.6a)

| 5 l[A(x —27)||%

(ADMM) < (9 _ 4T BTk

ka — arg miny zﬁ(y) Y . q2 ' Yy € y}, (5.6b)

L sl By =y~
AP = A — B(AzH 4 Byt —b). (5.6¢)

where
p" = X' —B(AzF 4+ By* —b),
k

= M — B(Ax*T1 + By* — ).



1B45 E R Special HEZE (5.2), ITFM AR

5.3 ADMM in PPA-sense

In order to solve the separable convex optimization problem (5.1), we construct a

method whose prediction-step is

O(u) — 0(7") + (w — )T F@*) > (v — T HW* — %), vw € 9,
(5.7a)
where

1+0)BB'B —BT
H = (L+0)p . , (asmalld > 0,say 0 = 0.05). (5.7b)
—B Elm
Since H is positive definite, we can use the update form of Algorithm | to produce
the new iterate v 1 = (y*T1, A¥+1) (In the algorithm [1], we took § = 0).
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The concrete form of (5.7) is

2\

| (Az" + Bg" —b)

( T
{=A" A"} >0, Az + By — b

02(y) — 02(5") + (y — g°)"
{(=BT)\ + (1 4+ 6)BBTB(§" — y*)—BT(\* — \")} >0,

The underline part is F'(0"):

“B@ —yh) + (1/8) (F =) =o.

In fact, the prediction can be arranged by

(&% = Argmin{Lg(z,y", \*) |z € X}, (5.8a)

A =\ — B(AZF + ByF — 1), (5.8b)
\

~ 05 (y) — y! BT 2\k — \F

yk = Argmin{ 2( )1+5 [ - ] ‘y c y}. (5.8¢)
\ +5°B81B(y — y")|

XTS5 ADMM (5.6) P F[a)FRMEE —1F, 32F (5.20) B IE, & MNIRUTES.
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5.4 Linearized ADMM-Like Method

By using the linearized version of (5.8), the prediction step becomes
0(u)—0(T")+(w—a")T F(wF) > (v—")T H(v*—5%), Yw € Q, (5.9)

where

sI —Bt \
] %% (5.7) B [
-B i1,

B
The concrete formula of (5.9) is

(1+6)BB"B —B'

n | 1
—B BIm

| 60

The underline part is F'(0"):
[ 01(2) — 61(F*) + (z — &) _ AT
{=AT)*} >0, F(w) = —BTA
- . Ax + By — b
02(y) — 02(3") + (y — 9*)"
{=BTX + s(7" —y*)=BT(\* =)} >0,
| (A" + Bj* —b)—B(5* — ") + (1/8)(AF = XF) = 0.

N\

(5.11)




How to implement the prediction? ' To get " which satisfies (5.11),

we need only use the following procedure:

y

7% = Argmin{Ls(z,y", \*) |z € X},

&A= \F — B(AZ* + ByF —b),

- ) ~ S
g¥ = Argmin{0s(y) — yT BT [2D* — \F] + Sy — y* %y € VI

\

A 5lly — o I1° B 281 By — o) I° AIRIEBS. FE s > 5 BT B

SHATER B >0, FXK s > ]| B Bl|, XA s RENIYLEHERE

Then, we use the form

Pt =0F —a(v” — %), a€(0,2)

to update the new iterate v*11.
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Conclusions

o THRER (V) F4RIE S KK (PPA) 2L EENAAEE.

WM B R AT EA AT . 2Rt MR T .

o FATRMAEEZIESR, WS IERR A I FIRIEE B £, iEFARIR
WIRFE. XPMELR, AT EZ MR AR ESHTE A

o RIE “SPLmREE” WITHNEZL B "SHARE" WRE LH—
B BT SUIZ A 1.
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