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1 Mathematical Background

1.1 Optimization problem and VI

Let {2 C R", we consider the convex minimization problem

min{ f(z) | x € Q}. (1.1)

What is the first-order optimal condition ? '

x* e Q) & z* € ()and any feasible direction is not a descent one.

Optimal condition in variational inequality form '

o Sy(z*) ={seR" | sTVf(z*) <0} = Setofthe descent directions.

o Si(x*) ={seR" | s=x—2a" x€l} = Setoffeasible directions.

e & *ef) and Sy(x*) N Sy(z*) =0.
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The optimal condition can be presented in a variational inequality (VI) form:
e Q, (x—z)'F(z*) >0, Vreq, (1.2)

where F'(x) = V f(x). Forgeneral VI, F'is an operator from R to itself.
/ =RY) The dash vectors are
infeasible directions

o

Fig. 1.1 Differential Convex Optimization and VI

Since f(x) is a convex function, we have

f(y) = f(2)+Vf(2)" (y—=) andthus (z—y)" (V[f(z)-V[(y)) = 0.

We say the gradient V f of the convex function f is a monotone operator.
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min{f(z)|lr € X}, z*e X, 0(x) —0(z*) >0, Ve X;

min{ f(z)|lx € X}, 2*e X, (zr—z*)IVf(z*) >0, Vzel.
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Lemma 1 Let X' C R" be a closed convex set, 0(x) and f(x) be convex func-
tions and f(x) is differentiable. Assume that the solution set of the minimization
problem min{f(x) + f(x) |x € X'} is nonempty. Then,

r* € argmin{f(z) + f(x) |x € X'} (1.3a)

if and only if

v e X, O(x) —0(z) + (x —2*)'Vf(z*) >0, Vz € X. (1.3b)




Linearly constrained Optimization in form of VI
We consider the linearly constrained convex optimization problem

min{f(u) | Au =05, u € U}. (1.4)
The Lagrange function of (1.4) is

L(u,\) = 0(u) — X' (Au—b),  (u,\) €U x ™. (1.5)

Saddle Point of the Lagrange Function




A pair of (u*, \*) € U x R™ is called a saddle point if
Lyegm (u*,\) < L(u*, \*) < Lycy(u, A").

The above inequalities can be written as

u" e, Lu,\*)—Lu",\")>0, YVuel, (1.6a)
A eR™ L(u*,\") — L(u*,\) >0, Ve R™. (1.6b)

According to the definition of L(u, \) (see(1.5)), we get the following variational

inequality:

w* e, Ou)—0u*)+ (u—u ) (-ATN*) >0, Vuecl,
R A= AT (Au* —b) >0, VAeRm



Using a more compact form, the saddle-point can be characterized as the solution

of the following VI:
w* € Q, Ou)—0u*)+ (w—w)'Fw*) >0, Ywe. (1.7

where

— AT\
w=<u), F(w)z( A ) and Q=UxR"™. (1.8)
A Au —b

Because F' is a affine operator and

re= () G) - ()

the matrix is skew-symmetric, and we have



Convex optimization problem with two separable functions I

min{6;(z) + 02(y) | Axr+ By=b, x € X,y € V}. (1.9)
The same analysis tells us that the saddle point is a solution of the following VI:
w* e, 0u) —0u")+ (w—w)" Fw") >0, YweQ. (1.10a)
where O(u) = 61 (x) + 02(y),

x — AT
T
w=|y |, u= , F(w) = — BT\ : (1.10b)

A Y Az + By — b
and 2 = X x ) x R™. The affine operator F'(w) has the form
0 0 —A" x 0
Flw)=|0 0 —-B* y | = 0
A B 0 A b

Again, we have



Convex optimization problem with three separable functions I

min{f(x) +602(y)+03(z) | Ar+By+Cz=b,z € X,y Y,z € Z},

is a special problem of (1.4) with three blocks. The Lagrangian function is
L3(z,y,2,\) = 01(x) + 02(y) + 03(2) — M (Ax + By + Cz — b).

The same analysis tells us that the saddle point is a solution of the following VI:

w* € Q, Ou) —0(u*) + (w—w)'Fw*) >0, Ywe Q.

where
(w\ T ( _AiA \
w = Z cou=|[y |, Fw)= :gTi ,
\ A/ & \ Az + By + Cz = b )

O(u) =01(x) +02(y) +03(2) and Q=X xY x Z x R™.



1.2 Proximal point algorithms and its Beyond

Lemma 2 Let the vectors a,b € R™, H € R"*" be a positive definite matrix.
if b1’ H(a — b) > 0, then we have

1117 < llallz — lla — bllZ- (1.11)

The assertion follows from ||a||%; = [0+ (a —)||% > ||bl|% + ||la — b||%;.

1.2.1 Proximal point algorithms for convex optimization
(Convex Optimization) ~ min{f(zx) + f(x) | z € X'}. (1.12)
Basic formula of the PPA (not too far away from the last iterate):
(PPA) 2Tt = Argmin{6(z) + f(x) + ng — 22 |z e XY (1.13)
Nice property of the Proximal Point Algorithm:

2"t —2|* < 2t — 27| = [la® - 2", (1.14)
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1.2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the linearly constrained convex optimization is

characterized as a mixed monotone variational inequality:

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN (1.15)

PPA for VI (1.15) in H-norm | For given w* and H > 0, find wk+1,

wh T e Q) O(u) — (W) + (w — wPTHT F (Wt
> (w—wTH WP — ), Ve Q. (1.16)

k+1

w is called the proximal point of the k-th iteration for the problem (1.15).

4 w” is the solution of (1.15) if and only if w" = w*t! L

Setting w = w™ in (1.16), we obtain

(wk—|—1_w*)TH(wk_wk—|—1) > H(uk+1)_0(u*)+(wk+1_w*)TF(wk+1)

11



Note that (see the structure of F'(w) in (1.8))
(wk—l—l . w*)TF(wk—{—l) _ (wk—l—l . ’U)*)TF(’LU*),
and consequently (by using (1.15)) we obtain

(Wt —w*) T Hw" —w* ™) > 0 ) —0(u*) + (0" —w*)T F(w*) > 0.

Thus, we have
(wh T — w)T H(w" — w1 > 0. (1.17)

By setting @ = w® — w* and b = w*t! — w*,

the inequality (1.17) means that bY H(a — b) > 0.

By using Lemma 2, we obtain

Hwk—H

—wlf < w® —w|lE - ot -t (1.18)

We get the nice convergence property of Proximal Point Algorithm for VI.

12



13

2 Splitting Methods in a Unified Framework

We study the algorithms using the guidance of variational inequality. The optimal condition

of the linearly constrained convex optimization is resulted in a variational inequality:
w*eQ, Ou)—0u")+ (w—w) Fw)>0, YVweQ (1)

2.1 Algorithms in a unified framework for VI (3.1)

[Prediction Step.] With given vk, find a vector W* € © which satisfying
0(u) — 0(7") + (w — ") F(@") > (v — )T QMW" — %), Yw € Q, (2.2a)

where the matrix @ has the property: Q7 + Q is positive definite.

[Correction Step.] Determine a nonsingular matrix M and a scalar o > 0, let

Pt = 0F — aM (" — o). (2.2b)

v is a part of the elements of the vector w, v = w is also possible. I




Convergence Conditions

For the matrices () and M, there is a positive definite matrix A such that
HM = Q. (2.3a)

For the given H, M and () satisfied the condition (2.3a), and the step size o determined in
(2.2), the matrix

G=Q"+Q—aM HM = 0. (2.3b)

Convergence using the unified framework

Theorem 1 Let {vk} be the sequence generated by a method for the problem
(3.1) and W is obtained in the k-th iteration. If v*, v*T1 and W* satisfy the

conditions in the unified framework, then we have
[ — vt < 0° = vt [[F = allvf =38, Yot e VE, (24)

where V* = {v* |v*is a part of w*, w* € Q*}.
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2.2 Convergence proof in the unified framework

In this section, assuming the conditions (2.3) in the unified framework are satisfied, we

prove some convergence properties

Theorem 2 Let {vk} be the sequence generated by a method for the problem (3.1) and

k+1

W" is obtained in the k-th iteration. If v* , U and " satisfy the conditions in the

unified framework, then we have

0" —0*||H < 0" — o™ |3 — a||v* — "5, Yo e V. (2.5)

Proof. Using () = H M (see (2.3a)), the prediction can be written as
0(u) — 0(a") + (w — ") F(@®) > (v — " THMW" — %), vw € Q.
By using relation (2.2b), v* — v*T! = aM (v* — %), we get
o{0(v) — 0(7") + (w — ") ' F(@*)} > (v — ") "HW" =", vw € Q.
Setting w = w™ in the above inequality, we get

(W* =" T TH @  —v*) > a{0(@") —0(u*) + (@ —w*)"F(@")}, Vw* € Q.

By using (0" — w*)TF(@") = (0" — w*)TF(w*) and the optimality of w™*,

15



we have
(V" — " THT (@ —0*) >0, W e V. (2.6)

Setting a = v®, b =0T ¢ =08"andd = v*, in the identity
T
2(a—b) H(c—d) = {lla—dllzz = [Ib—dllzr} — {lla — el — b — el },

it follows from (2.6) that

k+1

[ — o[ = " =" > 0" =" 0" = @)

For the right hand side of the last inequality, we have

k ~k 2 kE+1 ~k 12
0" — 0" || — [|v — 0" ||
ko ~k2 ko ~k k kd1y2
= " =07 = |(0" = 07) = (v =0 )| %
E = E - (|0 - 8) — aM (" - )| E

= 2a(0* =) HM®@" - %) — (" =) M HEM (" — &)
= a(@* = NTQ" + Q- aMTHM)(W* — ")
= v — %)% (2.8)

Substituting (2.8) in (2.7), the assertion of this theorem is proved. L]
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3 Special prediction-correction methods

We study the optimization algorithms using the guidance of variational inequality.

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN (3.1)

3.1 Algorithms (Q = H, H is positive definite

[Prediction Step.] With given v*, find a vector w* € € such that
0(u)—0(i")+(w—a T F(aF) > (v—0")TH(v*—o%), Yw € Q, (3.2a)

where the matrix H is symmetric and positive definite.

[Correction Step.] The new iterate v*+1 by

Pt = —a(v® — %), a€(0,2) (3.2b)

H is a symmetric positive definite matrix. I
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Since G = (2 —a)H, a|v® — %% = a2 — a)||v* — oF|%.
The sequence {Uk} generated by the prediction-correction method (3.2) satisfies

[ — o[ < 0" ="l — a2 = o)t = 0V E. Wt e V™.

The above inequality is the Key for convergence analysis !

Set = 1 in (2.2b), the prediction (3.2a) becomes: wrt1 € Q) such that
0(u)—0(u*™)+(w—w™T F () > (v—o™)T H (0=, v € Q.

The generated sequence {v”*} satisfies

L e [ (A A /P (TSR A

ENRIR (1.18) RIUWAFN, BXTH#LTE v BY PPA &
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3.2 Applications for separable problems

This section presents various applications of the proposed algorithms for the

separable convex optimization problem
min{6;(x) +02(y) | Ar+ By =b, x € X,y € V}. (3.1)
lts VI-form is

w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, Ywe. (3.2

where
x — AT\
x
w=|vy |, u= , F(w)= —BT ) , (3.3a)
A J Ax + By — b
and

O(u) = 01(x) + 02(y), Q=X xY xR™. (3.3b)

19



The augmented Lagrangian Function of the problem (3.1) is
La(z,y,\) = 6’1(:1:')—|—t92(y)—)\T(Ax+By—b)—|—§||Ax—|—By—b||2. (3.4)

Solving the problem (3.1) by using ADMM, the k-th iteration begins with given
(y*, A\F), it offers the new iterate (y* 11, A\*T1) via

(2F = arg min{ﬁg(x,yk, AF) ’ x € X}, (3.5a)
(ADMM) < "1 = arg min{ﬁ/g(xkﬂ,y,)\k) ‘ y eV}, (3.5b)
(AT = NP — B(Ax* T 4+ Byt —b). (3.5¢)
x
w=1| vy |, v= < ?)J\ > and V* = {(y",\") | (", y", \*) € Q" }.
A

The main convergence result is

L e el e P A O

20



21
where
T
H_(BB B 0 )
0 iI,

Ighoring some constant term in the objective function, ADMM (3.5) is
implemented by

% 2

0 . TAT k
£t = argmin/ ;(x) ! . p2 x € X}, (3.6a)

| 5 l[A(x —27)||%

(ADMM) < (9 _ 4T BTk

ka — arg miny zﬁ(y) Y . q2 ' Yy € y}, (3.6b)

L sl By =y~
AP = A — B(AzH 4 Byt —b). (3.6¢)

where
p" = X' —B(AzF 4+ By* —b),
k

= M — B(Ax*T1 + By* — ).



3.3 ADMM in PPA-sense

HRYE Special EIAREK WITHYAIRIEFE AXTFRIERE.

In order to solve the separable convex optimization problem (3.1), we construct a

method whose prediction-step is

O(u) — 0(i%) + (w — &*)TF(@*) > (v — )T HW" — %), vw € Q,

(3.7a)
where
BBTB + 01, — BT
H = , (asmalld > 0, say 0 = 0.05).
-B 51m
(3.7b)

Since H is positive definite, we can use the update form of Algorithm | to produce
the new iterate v*T1 = (y*T1 X*1) (In the algorithm [2], we took § = 0).

22



The concrete form of (3.7) is The underline part is F(u?"“):

91(x)—91(:i‘k)+(a:—a~vk)T _ AT
F(w) =

(

{_ATS‘IC} Z 07 _BT)‘
_ ~ Ax + By — b
02(y) — 02(3") + (v — g*)"
{=B"X* + (BB"B + 6I,.,)(§* — y*)—B"(\* = \")} > 0,
| (A#"+Bg*-b)  —B@E* -y + (1/8) V-1 =o0

\

In fact, the prediction can be arranged by

( 7" € Argmin{0; (z)—2" AN +1B|| Az + By* — b||> |z € X}, (3.8)

A= \F — B(AzF + By* —b), (3.8b)
\
02(y) — yT BT[2AF — A
y]kEArgmin{ , 2(y) yk 2[ , ]k , ‘yey}. (3.8¢)
\ +581B(y — y*)|I* + 56|y — v*|]

XA S 2 #3277 [E10A (3.5) HHE, K (2.20) K IE, RIMIRIEE.




According to Lemma 1, the solution of (3.8a), T* satisfies
e Xx, 01(x)—0.(z")
+ (z — ") T{—ATN* + BAT (AZ" + By" —b)} >0, Vz e X.

By using (3.8b), \* = \* — B(AZ* + By* — b), the above variational inequality can

be written as
Fex, 01(x) -0, + (-3 {-A" N} >0, vz ex.
The equation (3.8b) can written as

(AZ" + Bg" — b)—B(§* — y*) + (1/8) (A = ) =0,

The remainder part of the prediction (3.7), namely,
02(y) — 02(5°) + (y — §")*
{=BTA* + (BBTB + 61,.,) (5" —¢y*) =BT (\* =X*)} > 0

can be achieved by

) | . 1 1
g" = Argmin{62(y)—y" B" [2A"=A"+5 B By—y") " +50lly—y"II* [y € V}.

24



3.4 Linearized ADMM-Like Method

= FE1RE (3.8c) KIBBEMERT, B 5[y — " (I” KB 1528 By — vM)I1%.

By using the linearized version of (3.8), the prediction step becomes

0(u) — 0(7") + (w — ") F(@") > (v = ") H@" — %), vw € Q, 3.9

where

. T
H:[SI b } R (3.7) Bl {

The concrete formula of (3.9) is

(

1+6)8B*B —B?
(1+0)8 ) ] (3.10)
—B 5Im

1
—B E‘Tm

The underline part is F'(0"):
01 () — 01(2") + (z — z%)7 _ AT
{=AT)"} >0, F(w) = —BTX
_ N Ax + By — b
02(y) — 02(9") + (y —§°)" T
{=BTX\ + s(7" —y*)-BT(\* = A"} >0,

(3.11)

| (45" + Bi* — b)—B(5* — ") + (1/8)(F* — AF) = 0,

25



Then, we use the form

to update the new iterate v*11.

How to implement the prediction? ' To get w* which satisfies (3.11),

we need only use the following procedure:

i

7% € Argmin{6; (z) — 2T ATNF + 2 8||Ax + By* — b||* |z € X'},

&A=\ — B(AZF + By* —b),

~ ) ~ S
g¥ = Argmin{02(y) — yT BT[2D* — X\*] + Sy — y¥|1? |y € VI

A Slly —y"IIP % 2(BIB(y —y")I° +dlly — y" 1), AR,
FEs> BB B|. MAEM S >0, KKK s SEMHIERE.

RAEMM TR L8] By — )| 315 RBEM, 4 AL
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4 Wider Application & Easy Extensions

Let us consider the general separable convex optimization model
min {61 (x) + 02(y) | Az + By =b,z € X,y € V}. (4.1)

The augmented Lagrangian function is

Lo, 3) = 01 (x) + 0a(y) — N (Az + By —b) + 5| Az + By — b

4.1 From ALM to ADMM

Augmented Lagrangian Method for (4.1).  From \* to \*+1:

(2"t yF ) e argmin{Ls(x,y,\*) |z € X,y € V},

(4.2)

)\k—l—l — )\k _ /3(A£Ck+1 T Byk—l—l _ b)

27



ADMM for (4.1) From (y*, \¥) to (y*+1, AF+1)
B L= arg min{Lg(z,y", \*) |z € X},

¢ ¢"t e argmin{Ls(a", y, A |y € VY, (4.3)

)\k:—|—1 — )\k: . 5<A$k+1 i Byk+1 L b)

From (4.2) to (4.3), ADMM is a relaxed ALM.

ADMM is designed for equality constraints problems. I
The direct extension of ADMM is not necessarily convergent ! I
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lgnoring some constant terms in the objective functions of the corresponding
subproblems, we can rewrite the ADMM (4.3) as

[kt e argmin{6;(z) — 2T AT \Fts 4 SlA(z —2™)|1? |z € X},

O2(y) — y" BTA*Z 4
B k+1 k k|2 yeyo,
sIIAX™ —2%) + By —y")|

/"

Yt e argmin{

)\k:—l—l — )\k—B(AQ?k—I_l i Byk:—|—1 . b)

\
(4.4)
where

Atz = ko B(Az" + By* —b).

The A update form can be also denoted by

)\k-i-l — Ppm [)\k_ﬁ(Aajki—i-l + Byk—l-l . b)] .

AT IRBFANTEER B A G EF ADMM BY X &,
HAEL A ADMM 2B R ENEY (4.4).




4.2 ADMM with wider applications

Let us consider the general two-block separable convex optimization model
min {61 (z) + 62(y) | Az + By =b(or > b),z € X,y € Y}. (4.5

The linear constraints can be a system of linear equations or linear inequalities.
We define
A R™, it Ax + By = b,
", if Az + By > b.
The projection on A is denoted by Py [+].

For such special A\, the projection on A is clear !

The only difference: ~ Prm(A) = A, Prm(A) = max{\,0}.

30



4.2.1 Primal-dual extension of ADMM with wider application

A Primal-Dual Extension of the ADMM for (4.5).

From (Ax®, By® A\*)to (AzF+1, ByF+1 AF+1):
1. (Prediction Step) With given (Az", By, \F), find w* = (2, 5%, AF) via

( gk e argmin{61 (z) — zT ATAF + %BHA(% — M) |z € X},

q 7* € argmin{02(y) — yT BTA* + 28||A(@" — 2F) + B(y — y*) |12 |y € YV},

| A= Py [\F — B(AzF + BgF —b)].
(4.6a)

2. (Correction Step) Generate the new iterate (Az*+1, ByF+1 Ar+1)with v € (0,1) by

Axhtl Axk vl,, —vil, O Axhk — Azk
Byktl | = | By* | — 0 vlip, 0 By* — BgF | .  (4.6b)
et Ak —vBlm O In Ak — Nk

VAR IE, {BARIETE 2R 1R/ !

X E—RKFUN-RIEF A FEHM
TN SE 18 Primal BB 43, B8 Dual EB43, NGt BT LUE) T k.
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4.2.2 Dual-Primal extension of ADMM with wider application

A Dual-Primal Extension of the ADMM for (4.5).

From (Ax®, By® A\*)to (AzF+1, ByF+1 AF+1):
1. (Prediction Step) With given (Az", By®, \F), find w* = (2%, g, 5\1“) via

(N = Py [A\F — B(AzF + Byk —b)],

q ZF € argmin{61(z) — zT AT Xk 4 %BHA(CE — 2|2 |z € X},

| 9% € argmin{62(y) — yT BTNF + 58| A(EF — 2F) + By — v*)|I? |y € Y}
(4.7a)

2. (Correction Step) Generate the new iterate (Az*+1, ByF+1 Ar+1)with v € (0,1) by

Axhtl Axk vl, —vil,, O Axlk — Azk
Byktl | = | By* | — 0 vl 0 By* — BgF | . (4.7b)
Akt Ak — Bl —BLm Im Ak — Nk

TR B A B, BRIEANEEEARE. RIEREEIEER /Y.
TCit =2 primal-dual, I/ dual-primal /55%, &8 A] LA[E) 2% ER (o] jl B 3T
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5 p-block separable convex optimization problems

In the following we consider the multiple-block convex optimization:

1=1 1=1

The Lagrangian function is

p p

L(zy,. .. wp, A) = Y Oi(x;) — AT(ZAM —b),

1=1
which is definedon Q= []}_,; X; x A, where
§Rm’ if Zle AZZE,,, = b,

A =
%T, if Zle AZZCZ Z b.
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Let (27,...,x,,\") € € be a saddle point of the Lagrangian function, then
Lyea(xys- o xp, A) S L(x], .., 20, A") < Lyex; (1, -+, Tp, A7),
The optimality condition of (5.1) can be written as the following VI:

w* € Q, 0(x)—0x*) + (w—w)'Fw*) >0, YVwe, (52a)

where

(@) o) [ 4

w=| - , x=1 |, Flw)= :T , (5.2b)
Tp —A, A

Y, \7»/ \ 37, A — b

and . .
O(z) =) 0i(z;), Q=]]axA
i=1 i=1

Again, we denote by {2* the solution set of the VI (5.2).



5.1
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Primal-dual extension of the ADMM for p-block Problems

A Primal-Dual Extension of the ADMM for (5.1)

Prediction Step .

)\k+1):

From (Ala:’f, Ag:cg, e Ap

k+1 k+1 k+1
x];,)\k)to (Alacl+ ,A2x2+ o Ap:vp+

With given (Alxlf, AQCUS, e

, Apzk  XF), find 0% € 2 via

( ilf € argmin{@l(azl) — w?A?Ak + g”Al(aZl — ajlf)||2 | r1 € Xl};
75 € argmin{fs(z2) — z3 ATNF + 2| A1 (&F — %) + As(za — 25)|1? | 22 € A2}
{ ZF €argming, cx, {0i(z;) — xl ATNF + g” Z;;ll Aﬂi? — zc";) + Ai(z; — zP)|1? };
- . 1 -
Tk € arg ming, e x, {0p(zp) — al ATNR 4 g” Z?:lAj (;U;6 - x?)—FAp(xp —zE)|1*};
| AP =Pa[XF =B (320, Az —b)].

TS [RGB XHE. XA oS RIS




A Primal-Dual Extension of the ADMM for (5.1) Correction Step .

From (Alx’f, Agxg, e ,Apx’;, AF) to (A1x1f+1, A2x§+1, e ,Apxg+1, A+
Generate the new iterate (A1x1f+1, A2x§+1, e ,Ap:c];_i_l, Nt D) with v € (0, 1) by
(AN (At (ol vl 0 0 (Al - At

Agahtl Agak . - || Az —A2ih

— N —vl, O

Apa:’;"'l Apxlg 0 0 vin 0 pr’ﬁ—Ap@IS

k e+l ) \ Ak ) \_Vﬂ]m 0 0 ]m) \ e _ Nk )
(5.4)

XTER—TR AT AL I, §5.1 REVFTIE, Bl §4.2 1 ARV EIRHET .
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REFFER TEEHRR)D. ERELRNTHARERZ:

(Alajlf—kl\ (Alx’f\ (I ~Im 0 0 \ (Arah — A\
Agghtl Asxh o I, . 0 Az — AaZs
— — UV 9
1 . _1I,,
i) \aat)  \o o 0 ) \aet— a5
(5.5)

AL = N L uB(Aah — A ER). (5.6)
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5.2 Dual-primal extension of the ADMM for (5.1)

A Dual-Primal Extension of the ADMM for (5.1) Prediction Step .

k+1 k+1 1
From (Alzc’f,Agzcg,--- ,Apx’;,)\k)to (Ala:1+ ,A2x2+ o Ap:cp+ , AR

With given (Alx’f, Agm%, e ,Apa:]g, AF), find WF € Q via

(3= PA[ = B(, Al - b))
7% € argmin{01 (v1) — 2T ATNF + 2| Ay (21 — 2F)[? | 21 € A1 )

ik € argmin{6s(x2) — I AT Nk 4 §||A1(:E’f — k) + Ag(zo — xb)||? | 22 € X}

% € argming, e x, {0i(zi) — T ATNe + 5| 32027 Ay (&5 — 2%) + Ay(ai — 2)]12 )5

| 2k € argming, cx, {0p(zp) — 2T ATNE + S| TP 1A (@8 — 28) + Ap(zp — 282}
(5.7)

N Fe xS B IR G, X 7] 0 B RY R In 2 = F (0] Rl — 1 [T oK .




A Dual-Primal Extension of the ADMM for (5.1) Correction Step .

From (Alzc’f, AQZCS, e ,Apxlg, %) to (Ala:]f+1, A2x’2"+1’ e ,Apxlg‘i'l, AfeF1Y:
Generate the new iterate (Alazlf“q, Aga:ngl, e ,Apa:];Jrl, A1) with v € (0, 1) by
(Alxlf+1\ (Ala:]f\ (l/[m —vl, O 0 \ /Alx’f — Al.ff:’f\

A2x§+1 Agzh 0 v, : Az — AT

— - —vl,, O

Apzpt? Apzk 0 o0 vlm 0 || Apzk — Apzk

R N A LRI O SV ANNEAEP U
(5.8)

STRR—TRL AT AL I, §5.2 REVFIE, Bl §4.2.2 Fo ARV ELIRHES
FERN BREANTDF
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k+1 /.
Azt (i =1,...,p) [ The correction form of the primal parts are equal. '

[ Ay

k+1

\Apx];+1)

(Alx]f

Alej

\A;xg/

; : . =1y
\0 0 ]m)

(Alxlf - Aﬁ:lf\

AQCES — Agfg

\Apml; - APZEI; )
(5.9)

The correction form of the dual parts are slightly different. '
D

N =N 4 8 Ay — Agiy).

P [E 75 7ARY

(5.10)

)\k+1 — 5\k + VB(AléUIf — A1£73’1€) = )\k—'_l — S\k -+ 52?;1(14233? — A@flff)
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6 Convergence

The optimization problem (5.1) has been translated to VI (5.2), namely,

w* € Q, 0(z)—0(z*) + (w—w) F(w*) >0, YweN.

For the easy analysis, we need to denote the following notations:

(\/BAl 0 0 \ /\/BA1961\
0 BAy VBA2z2
P= , £E=Pw=
g VBAp 0 VBApTp
Lo o 0 (B \ (VB )
(6.1)

Accordingly, we define
E:{ﬁ\ﬁsz, wEQ},

and
= = {¢" | & = Pw*, w* € Q).



We will prove that both the primal-dual algorithm (5.3)-(5.4) and the dual-primal

algorithm (5.7)-(5.8) belong to the following prototypical algorithmic framework.

A Prototypical Algorithmic Framework for VI (5.2).
1. (Prediction Step) With given £ = Pw", find @* € Q such that

with @ € REFMX(P+1)m anq the matrix Q1 + Q is positive definite.

2. (Correction Step) With the predictor 1" by (6.2a) and gk — Pw", the new
iterate 11 is updated by

gt = ¢F — M(eF - €F), (6.20)

where M € RPTLmX(P+1)m g 3 non-singular matrix.
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Theorem 3 For the matrices Q and M in the algorithm (6.2), if there is a
positive definite matrix H € REP+DMX(p+)m g 0h that

HM = Q (6.3a)

and
G:=0T +90—- MTHM =0, (6.3b)

then we have
JeMHt — €3y < N6 — €N — lIE" = €MlG, Ve eE. (64
Proof. Setting w in (6.2a) as any fixed w* € {)*, and using
(0" —w*)' F(w*) = (0" —w*)" F(w*),
we get

(EF—e)TQ(eF %) > 0(aF) —O(u*) + (@F —w*) T F(w*), Vuw* € QF.
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The right-hand side of the last inequality is non-negative. Thus, we have

(P —eTQ(Er —€F) > (&8 —eHT ek — &F), ver e ="

Then, by simple manipulations, we obtain
€™ — €11 — 116" = €11y
e -y e — €)= M(EF - €M),
D o(eh — Tk - &) — [IM(eF - €Iy,

»

(6.5)

> 206" = N7 - &) — M - Ny
= (- +9Q - M HM|E" -EY)
et - Mg

The assertion of this theorem is proved. []

We call (6.3) the convergence conditions for the algorithm framework (6.2).

(6.5)

The inequality (6.4) is the key for the convergence proofs, for details, see [6]
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7 Convergence of the Primal-Dual Algorithm in 5.1

In order to prove the convergence of the algorithm (5.3)-(5.4), we need only to show that it
belongs to the algorithmic framework (6.2) and to verify the convergence conditions (6.3)

7.1 The algorithm (5.3)-(5.4) belongs to the framework (6.2)

Prediction | First, for the primal part of the predictor,

i—1
¥ e arg min{@i(xi)—a:?AiT)\k—l—g 1) A —af)+Ai(zi—a7) |2 € X}
j=1

According to Lemma 1, the optimal condition is ¥ € X; and

Oi(wi) — 05(&;) + (wi — 27) " {—AIN" + BAT (D Aj (%] — 27))} > 0,
71=1
for all z; € X;. It can be written as ¥ € X; and
0: () —0:(27)+ (i —37) T {— AT N +BAT (D) A (& —5))+ AT (A"=A")} > 0,

j=1
(7.1a)
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for all z; € X;. The dual part of the predictor, N = Py [)\k’ — 5(2?:1 Ajféé{-" — b)}

N = argmin{||X — [\ — B(7_, 4,25 — b)]||* | A € A}

The optimal condition is

e, A=XHT{(XTP A3 —b) + (W =M} >0, VA€ A (7.1b)

Summating (7.1a) and (7.1b), for the predictor nk generated by (5.3), we have nhi= (),

0(z) — 0(3°) + (w — &") " F(@") > (w — ") Qpp (" — B"), Vw € Q,

(7.2a)
where
[ BAT A, 0 - 0 AT
BA3 A1 BA3As 5 A3
Qpp = ; N 0 5 . (7.2b)
BA AT BAJAy -+ BAJA, A)

\ 0 0 - 0 3./
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Using the notation P in (6.1), for the the matrix (-, in (7.2b), we have

([m O --- 0 I, \
Lo L. - © In
Qrp=P7Q, P, where Q. = ; SORRRPOE )
Im Im ce Im Im
\ 0 0 - 0 I.)

Thus, for the right hand side of (7.2a), we have
(w = @) Qpp (" —@") = (w—@") P Qpp P(w" — ")
— (5 - ék)TQPD (gk — ék)

Then, it follows from (7.2) that we have the following inequality:

w" e Q, 0(x) —0(E") + (w— ") F(a")
> (E—EMTo, (5 -7, YyweQ. (74

where Q,, is given in (7.3).
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(\/BANU’TH\
VBAzzs !

\/BApx];Jrl

(\/BAla?lf
VBAxS

\/BAPCEI;

\(IAV/B)ARH

\(1V/B)A*)

Correction | Left-multiplying the matrix diag(\/B1m, - . . , v/ BIm, ﬁ[m) to both

sides of the correction step of the primal-dual algorithm, (5.4), we get

\ (IWVBYAF = XF) )
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Recall the definitions of the matrix P and Pw = £ (see(6.1)).

The correction step of the primal-dual algorithm, (5.4), can be written as

= &8 — My (€° - €5), (7.5a)
where
( vl,, —vl,, O 0 \
0 vil,,
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7.2 \Verifying the convergence conditions of the algorithm

In the algorithm (7.4)-(7.5), the matrices Q and M have the following forms:

(Im 0 - 0 Iy
I Im I,
0
I Im - I, Im
\ 0 0 - 0 Iy

(I/Im —vl,, O

0 vig,
0 . 0
\—ulm 0

vim 0
0 Im)

In order to simplify the notations to be used, we define the following p X p block matrices:

((In 0O 0 )
Ly Im :
E oo |

We also define the 1 X p block matrix

gz(m I,

[ I

0 0\




Recall the respective definitions £ and £ in (7.6) and (7.7). We have
((In ~I, 0 0 )
0 Im - O
-
K 0 e o I, )
(Im 0 --- 0) =Lt

Thus, see (7.3) and (7.5b), we have

and

0 o ET Dy veT 0 .
— an == .
i 0 I, P e T 1,

For the above matrices Q,.,, and M., the remaining tasks is to find a positive

definite matrix ., , such that the convergence conditions (6.3)are satisfied.
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Lemma 3 For the matrices Q,.,, and M., given by (7.3) and (7.5b),
respectively, the matrix

1oLt +eTe g7
H,, = with v € (0,1) (7.9)
E I,

is positive definite, and it satisfies H,, M, = Q.-

Proof. It is easy to check the positive definiteness of H. In addition, for the block
matrix Q in (7.3), we have

Lot 1 gTe g7 LT 0
HPDMPD —
E I —vEL™T I,
L &
— = Q..
0 I,

The assertions of this lemma are proved. []



Lemma4 Let Q. , My, and Hp, be defined in (7.3), (7.5b) and (7.9), respectively.
Then the matrix

Opp 1= (QZD + OQpp) — M;FD Hpp Mpp (7.10)

is positive definite.

Proof. By elementary matrix multiplications, we know that

. . T 0 vC™h 0 vI 0
MPD %PD MPD — Qpp MPD — —
g Im —I/gL_T Im 0 I’m

Then, it follows from £ + £ = T + ET € (see (7.6)-(7.7) ) that

gPD — (QJ-?D + QPD) - MZD Hpp Mpp,
B ct+c &* vl O [ = NI+ Ete &7
E 21, 0o I, E I,

Thus, the matrix G, is positive definite forany v € (0,1). [

Lemma 3 and Lemma 4 have verified the convergence conditions (6.3) and thus the key

convergence inequality (6.4) holds. The primal-dual algorithm (5.3)-(5.4) is convergent.
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8 Convergence of the Dual-Primal Algorithm in §5.2

In order to prove the convergence of the algorithm (5.7)-(5.8), we need only to show that it

belongs to the algorithmic framework (6.2) and to verify the convergence conditions (6.3).

8.1 The algorithm (5.7)-(5.8) belongs to the framework (6.2)

The predictor nk generated by (5.7), we have A= Q,

0(z) — 0(2") + (w — ") F(@") > (w — ") Qpp (W* — @), Yw e Q,
(8.1a)

where

( BA{ A 0 0 0 \

BA3 A1 BA3 A 5 0
Qpp = ; 0 5 . (8.1b)
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Using the notation P in (6.1), for the matrix (), in (8.1b), we have

(I, 0 -+ 0 0)
L Lm - 1 0
QDP:PTQDPP, where Qp = 0 . (8.2)
[m ]m ce ]m 0
\ Lo —Im - —Im Im )

Thus, for the right hand side of (8.1a), we have
(w = @) Qpp (W™ — @) = (w—d")' P Qpp P(w" —@")
— (5 - ék)TQDP (gk — ék)

Then, it follows from (8.1) that we have the following inequality:

W* e, 0(z) — 0" + (w— ") F (")
> (E-€)"Qpp (" =&Y, Ve (83

where Q. is given in (8.2).
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Correction

Recall the definitions of the matrix P and Pw = & (see(6.1)).

The correction step of the dual-primal algorithm, (5.8), can be written as

where

£k+1 — gk — MDP (gk: — gk)a (8.4a)
(yfm vl 0 - 0)
0 v, :
Mpp =1+ - - _ur. 0 |- (8.4b)

56



8.2 Verify the convergence conditions of the D-P algorithm

In the algorithm (6.2), the matrices Q and M have the following forms:

(Im 0 - 0 0
Im  Im -
or = | o0
Im Im -+ Im O

\ ~Im ~Im - —Im In

Recall the respective definition L in (7.6). We have

(Im I, O
o I,

Lo o

Thus, we have (see € in (7.7))

QDP — < —[é [?n ) and

0
0
I,

I, /

(u[m —vlp O - 0 \

0 vin '

' | —vlm 0O

0 0O vin O
\—Im —Ipm —Ipm Im)
—r T
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Lemma 5 For the matrices Q. and M., given by (8.2) and (8.4b),
respectively, the matrix

1oLt 0
H,,. = with v € (0,1) (8.6)
0 I,
is positive definite, and it satisfies H,, M, = Q..

Proof. It is easy to check the positive definiteness of H. In addition, for the block
matrix Q in (8.2), we have

1ect o0 vL~T 0
HDPMDP —
0 1, & 1,
L 0
— =Q ..
-£ 1,

The assertions of this lemma are proved. []
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Lemma6 Let Q. ., My, and Hyp be defined in (8.2), (8.4b) and (8.6), respectively.
Then the matrix

Opp = (Qgp + Opp) — Mgp Hpp Mpp (8.7)

is positive definite.

Proof. By elementary matrix multiplications, we know that

- - T —e™\(ve"T 0 T+ ETe —¢gT
Mop Fop Mpr = Qpp Mop = o 1.\ e 1.] " _£ Im

Then, it follows from L1 4+ £ = 7 + ET'E (see (7.6)-(7.7)) that

gDP — (Qgp T QDP) - Mgp Hpp MDP
£+ & v+ ETE &7 (1-v)T 0
£ 21, —& I, 0 I,

Thus, the matrix G, is positive definite for any v € (0, 1). L]

Lemma 5 and Lemma 6 have verified the convergence conditions (6.3) and thus the key

convergence inequality (6.4) holds. The dual-primal algorithm (5.7)-(5.8) is convergent.




9 Conclusions

o MEMRMRZE L RIE MBI RAREA H e A2 Mt mskay, A
RALBEFALRAA] B ftiLinlE. A ALM £ ADMM, 238 7]
S EREIRE D FERK AR, XM BIEAREHE B = RFN =R LR
A S in)ER, 312016 FFHY MP XEIERA T B YU oA PRIE.

e XRNERR/UMMERXE L REE AME = primal-dual, T2
dual-primal, & AT LAHET B[EE B BURA R B OO L IR B K f#E.
=i, EREHIMIKRIE. IERZE, RIEFFAE 2!

o HMMFRIHERFN-KIE", LEZAHRNRDBIRIE. EHZNF
HYSRBY, 2B E. Gt —FMRIE! B IRFTIN,
PEAR 7 Rl ; £ BEFKIE, 1R T U7 1=,
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IR IERIARZ R B EERE AT LA Rk FESFER R0, XL
KKRBAZFAARA ). EHAN—REEEZ AR 5 B 07,
B ARSI M IERRSE £ % —.
BEBREE WEESASEMME? L8 ADMM 2K AR
A EFNARGMALEER, I A IRB R IERAZ
BHEE (4.6) F1(4.7) KKk %, 5 A2 H#A) ADMM {XASEE
3, A HELEZFAY.
ERXNREF, T2 ERR T WA XA~ F T (6.4)

|eF T — £*II%{ < ||gF - €*H%{ —|j&F — Ek\@, VE e BT
KU BV i — 2 B 405 1] LS & TR [6).

HABE AT NASEE X ETEZROEET, i EHaE
= F P 3xD !
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